1
|
Chen YF, Luh F, Ho YS, Yen Y. Exosomes: a review of biologic function, diagnostic and targeted therapy applications, and clinical trials. J Biomed Sci 2024; 31:67. [PMID: 38992695 PMCID: PMC11238361 DOI: 10.1186/s12929-024-01055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/16/2024] [Indexed: 07/13/2024] Open
Abstract
Exosomes are extracellular vesicles generated by all cells and they carry nucleic acids, proteins, lipids, and metabolites. They mediate the exchange of substances between cells,thereby affecting biological properties and activities of recipient cells. In this review, we briefly discuss the composition of exocomes and exosome isolation. We also review the clinical applications of exosomes in cancer biology as well as strategies in exosome-mediated targeted drug delivery systems. Finally, the application of exosomes in the context of cancer therapeutics both in practice and literature are discussed.
Collapse
Affiliation(s)
- Yi-Fan Chen
- International Master Program in Translation Science, College of Medical Science and Technology, Taipei Medical University, New Taipei City, 23564, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, New Taipei City, 23564, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, New Taipei City, 23564, Taiwan
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Frank Luh
- Sino-American Cancer Foundation, Covina, CA, 91722, USA
| | - Yuan-Soon Ho
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung, 406040, Taiwan.
| | - Yun Yen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung, 406040, Taiwan.
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110301, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110301, Taiwan.
- Cancer Center, Taipei Municipal WanFang Hospital, Taipei, 11696, Taiwan.
- Center for Cancer Translational Research, Tzu Chi University, Hualien City, 970374, Taiwan.
| |
Collapse
|
2
|
Zhang Q, Wang L, Yu L, Yu Q, Xue L, Shen Z. Tectoridin inhibits the growth of bladder cancer by regulating PI3K/MAPK pathway through RAB27B. Mol Carcinog 2024; 63:1106-1116. [PMID: 38441297 DOI: 10.1002/mc.23712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 05/16/2024]
Abstract
Bladder cancer (BC) is a common and malignant tumor of the urinary tract, and its treatment options are limited. Tectoridin (TEC) has antitumor activity against prostate and colon cancer, but its effects on BC are poorly understood. BC cells were treated with increasing concentrations of TEC, and its effects on cell proliferation, migration, invasiveness, and apoptosis were assessed. Xenograft mouse model was used to evaluate the influences of TEC on BC tumor growth. Western blot analysis was conducted to explore the downstream pathways affected by TEC. TEC treatment decreased BC cell viability in a dose-dependent manner (IC50 ≈ 25 μM), and inhibited cell proliferation, migration, and invasiveness while promoting apoptosis. Clinical analysis revealed high expression of RAB27B in BC tumor tissues, particularly in advanced stages, correlating with an unfavorable prognosis. In vitro experiments demonstrated that TEC suppressed the PI3K/MAPK pathway by targeting RAB27B, and overexpression of RAB27B counteracted the antitumor effects of TEC. In xenograft models, TEC administration suppressed tumor growth, reduced tumor volume, inhibited cell proliferation, and suppressed the PI3K/MAPK pathway, highlighting its potential as an inhibitor of tumor growth. TEC suppresses BC tumor growth by targeting RAB27B and inactivating the PI3K/MAPK signaling and may provide a promising therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Qianjin Zhang
- Department of Urology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu Province, China
| | - Leiyu Wang
- Department of Urology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu Province, China
| | - Lei Yu
- Department of Urology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu Province, China
| | - Quansheng Yu
- Department of Urology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu Province, China
| | - Liuqing Xue
- Department of Urology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu Province, China
| | - Zhiyong Shen
- Department of Urology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| |
Collapse
|
3
|
Xu S, Cao B, Xuan G, Xu S, An Z, Zhu C, Li L, Tang C. Function and regulation of Rab GTPases in cancers. Cell Biol Toxicol 2024; 40:28. [PMID: 38695990 PMCID: PMC11065922 DOI: 10.1007/s10565-024-09866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
The Rab small GTPases are characterized by the distinct intracellular localization and modulate various endocytic, transcytic and exocytic transport pathways. Rab proteins function as scaffolds that connect signaling pathways and intracellular membrane trafficking processes through the recruitment of effectors, such as tethering factors, phosphatases, motors and kinases. In different cancers, Rabs play as either an onco-protein or a tumor suppressor role, highly dependending on the context. The molecular mechanistic research has revealed that Rab proteins are involved in cancer progression through influences on migration, invasion, metabolism, exosome secretion, autophagy, and drug resistance of cancer cells. Therefore, targeting Rab GTPases to recover the dysregulated vesicle transport systems may provide potential strategy to restrain cancer progression. In this review, we discuss the regulation of Rab protein level and activity in modulating pathways involved in tumor progression, and propose that Rab proteins may serve as a prognostic factor in different cancers.
Collapse
Affiliation(s)
- Shouying Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Bin Cao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ge Xuan
- Department of Gynaecology, Ningbo Women and Children's Hospital, No.339 Liuting Road, Ningbo, 315012, China
| | - Shu Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Zihao An
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chongying Zhu
- The Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Lin Li
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China.
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
4
|
Yoshida K, Htike K, Eguchi T, Kawai H, Eain HS, Tran MT, Sogawa C, Umemori K, Ogawa T, Kanemoto H, Ono K, Nagatsuka H, Sasaki A, Ibaragi S, Okamoto K. Rab11 suppresses head and neck carcinoma by regulating EGFR and EpCAM exosome secretion. J Oral Biosci 2024; 66:205-216. [PMID: 38072191 DOI: 10.1016/j.job.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 03/08/2024]
Abstract
OBJECTIVES Rab11(Rab11a and Rab11b) localizes primarily along recycling endosomes in cells and is involved in various intracellular trafficking processes, including membrane receptor recycling and secretion of exosomes or small extracellular vesicles (EVs). Although Rab11 is closely associated with the progression and metastasis of various cancer types, little is known about Rab11' role in head and neck squamous cell carcinoma (HNSCC). In this study, we investigated the roles of Rab11a and Rab11b in HNSCC. METHODS The clinical significance of Rab11 expression in HNSCC was investigated using a public database and tissue microarray analysis. Stable cell lines with loss and gain of Rab11a or Rab11b were originally established to investigate their roles in the proliferative, migratory, and invasive capabilities of HNSCC cells. RESULTS Database analysis revealed a significant association between Rab11b mRNA expression and a favorable patient survival rate in HNSCC. Tissue microarray analysis revealed that Rab11b expression was the highest in normal tissues and gradually decreased across the stages of HNSCC progression. Overexpression of Rab11a or Rab11b resulted in a decrease in epidermal growth factor receptor (EGFR), Epithelial cell adhesion molecule (EpCAM) exosome secretion, and the migratory and invasive potential of HNSCC cells. The knockdown of Rab11a or Rab11b increased EpCAM/CD9 exosome secretion in addition to the migratory and invasive potential of HNSCC cells. CONCLUSIONS Rab11 suppresses HNSCC by regulating EGFR recycling and EpCAM exosome secretion in HNSCC cells. Our results indicate that Rab11b is a superior prognostic indicator of HNSCC and holds promise for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kunihiro Yoshida
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan; Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Kaung Htike
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan; Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Htoo Shwe Eain
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Manh Tien Tran
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Chiharu Sogawa
- Department of Clinical Engineering, Faculty of Life Sciences, Hiroshima Institute of Technology, Hiroshima, 731-5197, Japan
| | - Koki Umemori
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Tatsuo Ogawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hideka Kanemoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Kisho Ono
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Akira Sasaki
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
5
|
Kimura Y, Ohzawa H, Miyato H, Kaneko Y, Kuchimaru T, Takahashi R, Yamaguchi H, Kurashina K, Saito S, Hosoya Y, Lefor AK, Sata N, Kitayama J. Intraperitoneal transfer of microRNA-29b-containing small extracellular vesicles can suppress peritoneal metastases of gastric cancer. Cancer Sci 2023; 114:2939-2950. [PMID: 36939028 PMCID: PMC10323101 DOI: 10.1111/cas.15793] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/21/2023] Open
Abstract
Small extracellular vesicles (sEV) contain various microRNAs (miRNAs) and play crucial roles in the tumor metastatic process. Although miR-29b levels in peritoneal exosomes were markedly reduced in patients with peritoneal metastases (PM), their role has not been fully clarified. In this study, we asked whether the replacement of miR-29b can affect the development of PM in a murine model. UE6E7T-12, human bone marrow-derived mesenchymal stem cells (BMSCs), were transfected with miR-29b-integrating recombinant lentiviral vector and sEV were isolated from culture supernatants using ultracentrifugation. The sEV contained markedly increased amounts of miR-29b compared with negative controls. Treatment with transforming growth factor-β1 decreased the expression of E-cadherin and calretinin with increased expression of vimentin and fibronectin on human omental tissue-derived mesothelial cells (HPMCs). However, the effects were totally abrogated by adding miR-29b-rich sEV. The sEV inhibited proliferation and migration of HPMCs by 15% (p < 0.005, n = 6) and 70% (p < 0.005, n = 6), respectively, and inhibited adhesion of NUGC-4 and MKN45 to HPMCs by 90% (p < 0.0001, n = 5) and 77% (p < 0.0001, n = 5), respectively. MicroRNA-29b-rich murine sEV were similarly obtained using mouse BMSCs and examined for in vivo effects with a syngeneic murine model using YTN16P, a highly metastatic clone of gastric cancer cell. Intraperitoneal (IP) transfer of the sEV every 3 days markedly reduced the number of PM from YTN16P in the mesentery (p < 0.05, n = 6) and the omentum (p < 0.05, n = 6). Bone marrow mesenchymal stem cell-derived sEV are a useful carrier for IP administration of miR-29b, which can suppress the development of PM of gastric cancer.
Collapse
Affiliation(s)
- Yuki Kimura
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
| | - Hideyuki Ohzawa
- Department of Clinical OncologyJichi Medical University HospitalShimotsukeJapan
| | - Hideyo Miyato
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
| | - Yuki Kaneko
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
| | | | - Rei Takahashi
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
| | - Hironori Yamaguchi
- Department of Clinical OncologyJichi Medical University HospitalShimotsukeJapan
| | - Kentaro Kurashina
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
| | - Shin Saito
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
| | - Yoshinori Hosoya
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
| | | | - Naohiro Sata
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
| | - Joji Kitayama
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
- Center for Clinical ResearchJichi Medical University HospitalShimotsukeJapan
| |
Collapse
|
6
|
Jo H, Shim K, Jeoung D. Exosomes: Diagnostic and Therapeutic Implications in Cancer. Pharmaceutics 2023; 15:pharmaceutics15051465. [PMID: 37242707 DOI: 10.3390/pharmaceutics15051465] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Exosomes are a subset of extracellular vesicles produced by all cells, and they are present in various body fluids. Exosomes play crucial roles in tumor initiation/progression, immune suppression, immune surveillance, metabolic reprogramming, angiogenesis, and the polarization of macrophages. In this work, we summarize the mechanisms of exosome biogenesis and secretion. Since exosomes may be increased in the cancer cells and body fluids of cancer patients, exosomes and exosomal contents can be used as cancer diagnostic and prognostic markers. Exosomes contain proteins, lipids, and nucleic acids. These exosomal contents can be transferred into recipient cells. Therefore, this work details the roles of exosomes and exosomal contents in intercellular communications. Since exosomes mediate cellular interactions, exosomes can be targeted for developing anticancer therapy. This review summarizes current studies on the effects of exosomal inhibitors on cancer initiation and progression. Since exosomal contents can be transferred, exosomes can be modified to deliver molecular cargo such as anticancer drugs, small interfering RNAs (siRNAs), and micro RNAs (miRNAs). Thus, we also summarize recent advances in developing exosomes as drug delivery platforms. Exosomes display low toxicity, biodegradability, and efficient tissue targeting, which make them reliable delivery vehicles. We discuss the applications and challenges of exosomes as delivery vehicles in tumors, along with the clinical values of exosomes. In this review, we aim to highlight the biogenesis, functions, and diagnostic and therapeutic implications of exosomes in cancer.
Collapse
Affiliation(s)
- Hyein Jo
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyeonghee Shim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|