1
|
Stansberry WM, Fiur NC, Robins MM, Pierchala BA. Analysis of translatomic changes in the Ubqln2P497S model of ALS reveals that motor neurons express muscle-associated genes in non-disease states. Front Neurol 2024; 15:1491415. [PMID: 39628898 PMCID: PMC11611750 DOI: 10.3389/fneur.2024.1491415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/01/2024] [Indexed: 12/06/2024] Open
Abstract
Introduction Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by progressively worsening motor symptoms that lead to eventual fatal paralysis. The number of gene mutations associated with ALS have increased dramatically in recent years, suggesting heterogeneity in the etiology of ALS and the need to develop new models of the disease that encompass these pathologies. In 2011, mutations in the UBQLN2 gene were identified in families with both ALS and frontotemporal dementia (FTD) and have since been linked to ubiquitinated TDP43 inclusion pathology. The involvement of UBQLN2 in ubiquitination and proteasome function suggests an important role in proteostasis, which is reported to be impaired in ALS. Methods A UBQLN2 mouse model was generated for the P497S mutation and recapitulates some of the motor symptoms of ALS. We utilized ribosomal profiling followed by mRNA sequencing of associated transcripts to characterize gene expression changes of motor neurons in the Ubqln2P497S model and evaluated ALS phenotypes in these animals. Results At 12 months of age, we observed reduced motor neuron survival and neuromuscular junction denervation in these mice that translated into motor deficits observed in locomotor behavioral trials. The sequencing of motor neuron transcripts revealed that Wnt pathways and muscle-related transcripts were downregulated in Ubqln2P497S mice, while metabolic pathways were upregulated. Discussion Surprisingly, genes often reported to be muscle-specific, such as Desmin and Acta1, were expressed in motor neurons and were dramatically downregulated in symptomatic Ubqln2P497S mice. The expression of muscle transcripts by motor neurons suggests their potentially supportive role in skeletal muscle maintenance.
Collapse
Affiliation(s)
- Wesley M. Stansberry
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Natalie C. Fiur
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Melissa M. Robins
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brian A. Pierchala
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
2
|
Krupp S, Hubbard I, Tam O, Hammell GM, Dubnau J. TDP-43 pathology in Drosophila induces glial-cell type specific toxicity that can be ameliorated by knock-down of SF2/SRSF1. PLoS Genet 2023; 19:e1010973. [PMID: 37747929 PMCID: PMC10553832 DOI: 10.1371/journal.pgen.1010973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/05/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
Accumulation of cytoplasmic inclusions of TAR-DNA binding protein 43 (TDP-43) is seen in both neurons and glia in a range of neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD) and Alzheimer's disease (AD). Disease progression involves non-cell autonomous interactions among multiple cell types, including neurons, microglia and astrocytes. We investigated the effects in Drosophila of inducible, glial cell type-specific TDP-43 overexpression, a model that causes TDP-43 protein pathology including loss of nuclear TDP-43 and accumulation of cytoplasmic inclusions. We report that TDP-43 pathology in Drosophila is sufficient to cause progressive loss of each of the 5 glial sub-types. But the effects on organismal survival were most pronounced when TDP-43 pathology was induced in the perineural glia (PNG) or astrocytes. In the case of PNG, this effect is not attributable to loss of the glial population, because ablation of these glia by expression of pro-apoptotic reaper expression has relatively little impact on survival. To uncover underlying mechanisms, we used cell-type-specific nuclear RNA sequencing to characterize the transcriptional changes induced by pathological TDP-43 expression. We identified numerous glial cell-type specific transcriptional changes. Notably, SF2/SRSF1 levels were found to be decreased in both PNG and in astrocytes. We found that further knockdown of SF2/SRSF1 in either PNG or astrocytes lessens the detrimental effects of TDP-43 pathology on lifespan, but extends survival of the glial cells. Thus TDP-43 pathology in astrocytes or PNG causes systemic effects that shorten lifespan and SF2/SRSF1 knockdown rescues the loss of these glia, and also reduces their systemic toxicity to the organism.
Collapse
Affiliation(s)
- Sarah Krupp
- Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, New York, United States of America
| | - Isabel Hubbard
- Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, New York, United States of America
| | - Oliver Tam
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Gale M. Hammell
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Josh Dubnau
- Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, New York, United States of America
- Department of Anesthesiology, Stony Brook School of Medicine, New York, United States of America
| |
Collapse
|
3
|
Krupp S, Tam O, Hammell MG, Dubnau J. TDP-43 pathology in Drosophila induces glial-cell type specific toxicity that can be ameliorated by knock-down of SF2/SRSF1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539439. [PMID: 37205372 PMCID: PMC10187300 DOI: 10.1101/2023.05.04.539439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Accumulation of cytoplasmic inclusions of TAR-DNA binding protein 43 (TDP-43) is seen in both neurons and glia in a range of neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD) and Alzheimer's disease (AD). Disease progression involves non-cell autonomous interactions among multiple cell types, including neurons, microglia and astrocytes. We investigated the effects in Drosophila of inducible, glial cell type-specific TDP-43 overexpression, a model that causes TDP-43 protein pathology including loss of nuclear TDP-43 and accumulation of cytoplasmic inclusions. We report that TDP-43 pathology in Drosophila is sufficient to cause progressive loss of each of the 5 glial sub-types. But the effects on organismal survival were most pronounced when TDP-43 pathology was induced in the perineural glia (PNG) or astrocytes. In the case of PNG, this effect is not attributable to loss of the glial population, because ablation of these glia by expression of pro-apoptotic reaper expression has relatively little impact on survival. To uncover underlying mechanisms, we used cell-type-specific nuclear RNA sequencing to characterize the transcriptional changes induced by pathological TDP-43 expression. We identified numerous glial cell-type specific transcriptional changes. Notably, SF2/SRSF1 levels were found to be decreased in both PNG and in astrocytes. We found that further knockdown of SF2/SRSF1 in either PNG or astrocytes lessens the detrimental effects of TDP-43 pathology on lifespan, but extends survival of the glial cells. Thus TDP-43 pathology in astrocytes or PNG causes systemic effects that shorten lifespan and SF2/SRSF1 knockdown rescues the loss of these glia, and also reduces their systemic toxicity to the organism.
Collapse
Affiliation(s)
- S. Krupp
- Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, NY 11794, USA
| | - O Tam
- Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, NY.,11794
| | - M Gale Hammell
- Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, NY.,11794
| | - J Dubnau
- Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, NY 11794, USA
- Department of Anesthesiology, Stony Brook School of Medicine, NY 11794, USA
| |
Collapse
|
4
|
Barbosa M, Santos M, de Sousa N, Duarte-Silva S, Vaz AR, Salgado AJ, Brites D. Intrathecal Injection of the Secretome from ALS Motor Neurons Regulated for miR-124 Expression Prevents Disease Outcomes in SOD1-G93A Mice. Biomedicines 2022; 10:biomedicines10092120. [PMID: 36140218 PMCID: PMC9496075 DOI: 10.3390/biomedicines10092120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with short life expectancy and no effective therapy. We previously identified upregulated miR-124 in NSC-34-motor neurons (MNs) expressing human SOD1-G93A (mSOD1) and established its implication in mSOD1 MN degeneration and glial cell activation. When anti-miR-124-treated mSOD1 MN (preconditioned) secretome was incubated in spinal cord organotypic cultures from symptomatic mSOD1 mice, the dysregulated homeostatic balance was circumvented. To decipher the therapeutic potential of such preconditioned secretome, we intrathecally injected it in mSOD1 mice at the early stage of the disease (12-week-old). Preconditioned secretome prevented motor impairment and was effective in counteracting muscle atrophy, glial reactivity/dysfunction, and the neurodegeneration of the symptomatic mSOD1 mice. Deficits in corticospinal function and gait abnormalities were precluded, and the loss of gastrocnemius muscle fiber area was avoided. At the molecular level, the preconditioned secretome enhanced NeuN mRNA/protein expression levels and the PSD-95/TREM2/IL-10/arginase 1/MBP/PLP genes, thus avoiding the neuronal/glial cell dysregulation that characterizes ALS mice. It also prevented upregulated GFAP/Cx43/S100B/vimentin and inflammatory-associated miRNAs, specifically miR-146a/miR-155/miR-21, which are displayed by symptomatic animals. Collectively, our study highlights the intrathecal administration of the secretome from anti-miR-124-treated mSOD1 MNs as a therapeutic strategy for halting/delaying disease progression in an ALS mouse model.
Collapse
Affiliation(s)
- Marta Barbosa
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Marta Santos
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Nídia de Sousa
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4806-909 Guimarães, Portugal
| | - Sara Duarte-Silva
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4806-909 Guimarães, Portugal
| | - Ana Rita Vaz
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - António J. Salgado
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4806-909 Guimarães, Portugal
| | - Dora Brites
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
5
|
Liu YF, Zou ZY, Cai LM, Lin JH, Zhou MX, Huang NX, Zhan C, Chen HJ. Characterizing Sensorimotor-Related Area Abnormalities in Amyotrophic Lateral Sclerosis: An Intravoxel Incoherent Motion Magnetic Resonance Imaging Study. Acad Radiol 2022; 29 Suppl 3:S141-S146. [PMID: 34481706 DOI: 10.1016/j.acra.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/08/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022]
Abstract
RATIONALE AND OBJECTIVES To investigate the microperfusion and water molecule diffusion alterations in sensorimotor-related areas in amyotrophic lateral sclerosis (ALS) using intravoxel incoherent motion (IVIM) magnetic resonance imaging. MATERIALS AND METHODS IVIM data were obtained from 43 ALS patients and 31 controls. This study employed the revised ALS Functional Rating Scale (ALSFRS-R) in evaluating disease severity. IVIM-derived metrics were calculated, including diffusion coefficient (D), pseudo-diffusion coefficient, and perfusion fraction. Conventional apparent diffusion coefficient was also computed. Atlas-based analysis was conducted to detect between-group difference in these metrics in sensorimotor-related gray/white matter areas. Spearman correlation analysis was employed to establish correlation between various metrics and ALSFRS-R. RESULTS ALS patients had perfusion fraction (× 10-3) reduction in the left presupplementary motor area (60.72 ± 16.15 vs. 71.15 ± 12.98, p = 0.016), right presupplementary motor area (61.35 ± 17.02 vs. 72.18 ± 14.22, p = 0.016), left supplementary motor area (55.73 ± 12.29 vs. 64.12 ± 9.17, p = 0.015), and right supplementary motor area (56.53 ± 11.93 vs. 63.67 ± 10.03, p = 0.020). Patients showed D (× 10-6 mm2/s) increase in a white matter tract projecting to the right ventral premotor cortex (714.20 ± 39.75 vs. 691.01 ± 24.53, p = 0.034). A negative correlation between D of right ventral premotor cortex tract and ALSFRS-R score was observed (r = -0.316, p = 0.039). CONCLUSION These findings suggest aberrant microperfusion and water molecule diffusion in the sensorimotor-related areas in ALS patients, which are associated with motor impairment in ALS.
Collapse
Affiliation(s)
- Yuan-Fen Liu
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Li-Min Cai
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Jia-Hui Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Min-Xiong Zhou
- College of Medical Imaging, Shang Hai University of Medicine & Health Sciences, Shanghai, China
| | - Nao-Xin Huang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chuanyin Zhan
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| |
Collapse
|
6
|
Rey F, Marcuzzo S, Bonanno S, Bordoni M, Giallongo T, Malacarne C, Cereda C, Zuccotti GV, Carelli S. LncRNAs Associated with Neuronal Development and Oncogenesis Are Deregulated in SOD1-G93A Murine Model of Amyotrophic Lateral Sclerosis. Biomedicines 2021; 9:biomedicines9070809. [PMID: 34356873 PMCID: PMC8301400 DOI: 10.3390/biomedicines9070809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease caused in 10% of cases by inherited mutations considered “familial”. An ever-increasing amount of evidence is showing a fundamental role for RNA metabolism in ALS pathogenesis, and long non-coding RNAs (lncRNAs) appear to play a role in ALS development. Here, we aim to investigate the expression of a panel of lncRNAs (linc-Enc1, linc–Brn1a, linc–Brn1b, linc-p21, Hottip, Tug1, Eldrr, and Fendrr) which could be implicated in early phases of ALS. Via Real-Time PCR, we assessed their expression in a murine familial model of ALS (SOD1-G93A mouse) in brain and spinal cord areas of SOD1-G93A mice in comparison with that of B6.SJL control mice, in asymptomatic (week 8) and late-stage disease (week 18). We highlighted a specific area and pathogenetic-stage deregulation in each lncRNA, with linc-p21 being deregulated in all analyzed tissues. Moreover, we analyzed the expression of their human homologues in SH-SY5Y-SOD1-WT and SH-SY5Y-SOD1-G93A, observing a profound alteration in their expression. Interestingly, the lncRNAs expression in our ALS models often resulted opposite to that observed for the lncRNAs in cancer. These evidences suggest that lncRNAs could be novel disease-modifying agents, biomarkers, or pathways affected by ALS neurodegeneration.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milano, Italy; (F.R.); (T.G.); (G.V.Z.)
- Paediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, 20157 Milano, Italy
| | - Stefania Marcuzzo
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (S.M.); (S.B.); (C.M.)
| | - Silvia Bonanno
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (S.M.); (S.B.); (C.M.)
| | - Matteo Bordoni
- Centro di Eccellenza Sulle Malattie Neurodegenerative, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| | - Toniella Giallongo
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milano, Italy; (F.R.); (T.G.); (G.V.Z.)
- Paediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, 20157 Milano, Italy
| | - Claudia Malacarne
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (S.M.); (S.B.); (C.M.)
- PhD Program in Neuroscience, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Cristina Cereda
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, 27100 Pavia, Italy;
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milano, Italy; (F.R.); (T.G.); (G.V.Z.)
- Paediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, 20157 Milano, Italy
- Department of Pediatrics, Children’s Hospital “V. Buzzi”, Via Lodovico Castelvetro 32, 20154 Milano, Italy
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milano, Italy; (F.R.); (T.G.); (G.V.Z.)
- Paediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, 20157 Milano, Italy
- Correspondence: ; Tel.: +39-02-50319825
| |
Collapse
|
7
|
Vorobyov V, Deev A, Sengpiel F, Nebogatikov V, Ustyugov AA. Cortical and Striatal Electroencephalograms and Apomorphine Effects in the FUS Mouse Model of Amyotrophic Lateral Sclerosis. J Alzheimers Dis 2021; 81:1429-1443. [PMID: 33935079 DOI: 10.3233/jad-201472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motor neurons resulting in muscle atrophy. In contrast to the lower motor neurons, the role of upper (cortical) neurons in ALS is yet unclear. Maturation of locomotor networks is supported by dopaminergic (DA) projections from substantia nigra to the spinal cord and striatum. OBJECTIVE To examine the contribution of DA mediation in the striatum-cortex networks in ALS progression. METHODS We studied electroencephalogram (EEG) from striatal putamen (Pt) and primary motor cortex (M1) in ΔFUS(1-359)-transgenic (Tg) mice, a model of ALS. EEG from M1 and Pt were recorded in freely moving young (2-month-old) and older (5-month-old) Tg and non-transgenic (nTg) mice. EEG spectra were analyzed for 30 min before and for 60 min after systemic injection of a DA mimetic, apomorphine (APO), and saline. RESULTS In young Tg versus nTg mice, baseline EEG spectra in M1 were comparable, whereas in Pt, beta activity in Tg mice was enhanced. In older Tg versus nTg mice, beta dominated in EEG from both M1 and Pt, whereas theta and delta 2 activities were reduced. In younger Tg versus nTg mice, APO increased theta and decreased beta 2 predominantly in M1. In older mice, APO effects in these frequency bands were inversed and accompanied by enhanced delta 2 and attenuated alpha in Tg versus nTg mice. CONCLUSION We suggest that revealed EEG modifications in ΔFUS(1-359)-transgenic mice are associated with early alterations in the striatum-cortex interrelations and DA transmission followed by adaptive intracerebral transformations.
Collapse
Affiliation(s)
- Vasily Vorobyov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russian Federation
| | - Alexander Deev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russian Federation
| | - Frank Sengpiel
- School of Biosciences and Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Vladimir Nebogatikov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Russian Federation
| | - Aleksey A Ustyugov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Russian Federation
| |
Collapse
|
8
|
Overexpression of miR-124 in Motor Neurons Plays a Key Role in ALS Pathological Processes. Int J Mol Sci 2021; 22:ijms22116128. [PMID: 34200161 PMCID: PMC8201298 DOI: 10.3390/ijms22116128] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
miRNA(miR)-124 is an important regulator of neurogenesis, but its upregulation in SOD1G93A motor neurons (mSOD1 MNs) was shown to associate with neurodegeneration and microglia activation. We used pre-miR-124 in wild-type (WT) MNs and anti-miR-124 in mSOD1 MNs to characterize the miR-124 pathological role. miR-124 overexpression in WT MNs produced a miRNA profile like that of mSOD1 MNs (high miR-125b; low miR-146a and miR-21), and similarly led to early apoptosis. Alterations in mSOD1 MNs were abrogated with anti-miR-124 and changes in their miRNAs mostly recapitulated by their secretome. Normalization of miR-124 levels in mSOD1 MNs prevented the dysregulation of neurite network, mitochondria dynamics, axonal transport, and synaptic signaling. Same alterations were observed in WT MNs after pre-miR-124 transfection. Secretome from mSOD1 MNs triggered spinal microglia activation, which was unno-ticed with that from anti-miR-124-modulated cells. Secretome from such modulated MNs, when added to SC organotypic cultures from mSOD1 mice in the early symptomatic stage, also coun-teracted the pathology associated to GFAP decrease, PSD-95 and CX3CL1-CX3CR1 signaling im-pairment, neuro-immune homeostatic imbalance, and enhanced miR-124 expression levels. Data suggest that miR-124 is implicated in MN degeneration and paracrine-mediated pathogenicity. We propose miR-124 as a new therapeutic target and a promising ALS biomarker in patient sub-populations.
Collapse
|
9
|
Liguori F, Amadio S, Volonté C. Where and Why Modeling Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:ijms22083977. [PMID: 33921446 PMCID: PMC8070525 DOI: 10.3390/ijms22083977] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Over the years, researchers have leveraged a host of different in vivo models in order to dissect amyotrophic lateral sclerosis (ALS), a neurodegenerative/neuroinflammatory disease that is heterogeneous in its clinical presentation and is multigenic, multifactorial and non-cell autonomous. These models include both vertebrates and invertebrates such as yeast, worms, flies, zebrafish, mice, rats, guinea pigs, dogs and, more recently, non-human primates. Despite their obvious differences and peculiarities, only the concurrent and comparative analysis of these various systems will allow the untangling of the causes and mechanisms of ALS for finally obtaining new efficacious therapeutics. However, harnessing these powerful organisms poses numerous challenges. In this context, we present here an updated and comprehensive review of how eukaryotic unicellular and multicellular organisms that reproduce a few of the main clinical features of the disease have helped in ALS research to dissect the pathological pathways of the disease insurgence and progression. We describe common features as well as discrepancies among these models, highlighting new insights and emerging roles for experimental organisms in ALS.
Collapse
Affiliation(s)
- Francesco Liguori
- Preclinical Neuroscience, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (F.L.); (S.A.)
| | - Susanna Amadio
- Preclinical Neuroscience, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (F.L.); (S.A.)
| | - Cinzia Volonté
- Preclinical Neuroscience, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (F.L.); (S.A.)
- Institute for Systems Analysis and Computer Science “A. Ruberti”, National Research Council (IASI—CNR), 00185 Rome, Italy
- Correspondence: ; Tel.: +39-06-50170-3084
| |
Collapse
|
10
|
Ng Kee Kwong KC, Mehta AR, Nedergaard M, Chandran S. Defining novel functions for cerebrospinal fluid in ALS pathophysiology. Acta Neuropathol Commun 2020; 8:140. [PMID: 32819425 PMCID: PMC7439665 DOI: 10.1186/s40478-020-01018-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Despite the considerable progress made towards understanding ALS pathophysiology, several key features of ALS remain unexplained, from its aetiology to its epidemiological aspects. The glymphatic system, which has recently been recognised as a major clearance pathway for the brain, has received considerable attention in several neurological conditions, particularly Alzheimer's disease. Its significance in ALS has, however, been little addressed. This perspective article therefore aims to assess the possibility of CSF contribution in ALS by considering various lines of evidence, including the abnormal composition of ALS-CSF, its toxicity and the evidence for impaired CSF dynamics in ALS patients. We also describe a potential role for CSF circulation in determining disease spread as well as the importance of CSF dynamics in ALS neurotherapeutics. We propose that a CSF model could potentially offer additional avenues to explore currently unexplained features of ALS, ultimately leading to new treatment options for people with ALS.
Collapse
Affiliation(s)
- Koy Chong Ng Kee Kwong
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Arpan R Mehta
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Siddharthan Chandran
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK.
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK.
- Centre for Brain Development and Repair, inStem, Bangalore, India.
| |
Collapse
|
11
|
Gatto RG, Weissmann C, Amin M, Finkielsztein A, Sumagin R, Mareci TH, Uchitel OD, Magin RL. Assessing neuraxial microstructural changes in a transgenic mouse model of early stage Amyotrophic Lateral Sclerosis by ultra-high field MRI and diffusion tensor metrics. Animal Model Exp Med 2020; 3:117-129. [PMID: 32613171 PMCID: PMC7323706 DOI: 10.1002/ame2.12112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/28/2020] [Accepted: 03/22/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Cell structural changes are one of the main features observed during the development of amyotrophic lateral sclerosis (ALS). In this work, we propose the use of diffusion tensor imaging (DTI) metrics to assess specific ultrastructural changes in the central nervous system during the early neurodegenerative stages of ALS. METHODS Ultra-high field MRI and DTI data at 17.6T were obtained from fixed, excised mouse brains, and spinal cords from ALS (G93A-SOD1) mice. RESULTS Changes in fractional anisotropy (FA) and linear, planar, and spherical anisotropy ratios (CL, CP, and CS, respectively) of the diffusion eigenvalues were measured in white matter (WM) and gray matter (GM) areas associated with early axonal degenerative processes (in both the brain and the spinal cord). Specifically, in WM structures (corpus callosum, corticospinal tract, and spinal cord funiculi) as the disease progressed, FA, CL, and CP values decreased, whereas CS values increased. In GM structures (prefrontal cortex, hippocampus, and central spinal cord) FA and CP decreased, whereas the CL and CS values were unchanged or slightly smaller. Histological studies of a fluorescent mice model (YFP, G93A-SOD1 mouse) corroborated the early alterations in neuronal morphology and axonal connectivity measured by DTI. CONCLUSIONS Changes in diffusion tensor shape were observed in this animal model at the early, nonsymptomatic stages of ALS. Further studies of CL, CP, and CS as imaging biomarkers should be undertaken to refine this neuroimaging tool for future clinical use in the detection of the early stages of ALS.
Collapse
Affiliation(s)
- Rodolfo G. Gatto
- Department of BioengineeringUniversity of Illinois at ChicagoChicagoILUSA
| | - Carina Weissmann
- Instituto de Fisiología Biologia Molecular y Neurociencias‐IFIBYNE‐CONICETUniversity of Buenos AiresBuenos AiresArgentina
| | - Manish Amin
- Department of BiochemistryNational High Magnetic Field LaboratoryUniversity of FloridaGainesvilleFLUSA
| | - Ariel Finkielsztein
- Department of PathologySchool of MedicineNorthwestern UniversityChicagoILUSA
| | - Ronen Sumagin
- Department of PathologySchool of MedicineNorthwestern UniversityChicagoILUSA
| | - Thomas H. Mareci
- Department of BiochemistryNational High Magnetic Field LaboratoryUniversity of FloridaGainesvilleFLUSA
| | - Osvaldo D. Uchitel
- Instituto de Fisiología Biologia Molecular y Neurociencias‐IFIBYNE‐CONICETUniversity of Buenos AiresBuenos AiresArgentina
| | - Richard L. Magin
- Department of BioengineeringUniversity of Illinois at ChicagoChicagoILUSA
| |
Collapse
|
12
|
Williamson MG, Finelli MJ, Sleigh JN, Reddington A, Gordon D, Talbot K, Davies KE, Oliver PL. Neuronal over-expression of Oxr1 is protective against ALS-associated mutant TDP-43 mislocalisation in motor neurons and neuromuscular defects in vivo. Hum Mol Genet 2020; 28:3584-3599. [PMID: 31642482 PMCID: PMC6927465 DOI: 10.1093/hmg/ddz190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/04/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
A common pathological hallmark of amyotrophic lateral sclerosis (ALS) and the related neurodegenerative disorder frontotemporal dementia, is the cellular mislocalization of transactive response DNA-binding protein 43 kDa (TDP-43). Additionally, multiple mutations in the TARDBP gene (encoding TDP-43) are associated with familial forms of ALS. While the exact role for TDP-43 in the onset and progression of ALS remains unclear, the identification of factors that can prevent aberrant TDP-43 localization and function could be clinically beneficial. Previously, we discovered that the oxidation resistance 1 (Oxr1) protein could alleviate cellular mislocalization phenotypes associated with TDP-43 mutations, and that over-expression of Oxr1 was able to delay neuromuscular abnormalities in the hSOD1G93A ALS mouse model. Here, to determine whether Oxr1 can protect against TDP-43-associated phenotypes in vitro and in vivo, we used the same genetic approach in a newly described transgenic mouse expressing the human TDP-43 locus harbouring an ALS disease mutation (TDP-43M337V). We show in primary motor neurons from TDP-43M337V mice that genetically-driven Oxr1 over-expression significantly alleviates cytoplasmic mislocalization of mutant TDP-43. We also further quantified newly-identified, late-onset neuromuscular phenotypes of this mutant line, and demonstrate that neuronal Oxr1 over-expression causes a significant reduction in muscle denervation and neuromuscular junction degeneration in homozygous mutants in parallel with improved motor function and a reduction in neuroinflammation. Together these data support the application of Oxr1 as a viable and safe modifier of TDP-43-associated ALS phenotypes.
Collapse
Affiliation(s)
- Matthew G Williamson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Mattéa J Finelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - James N Sleigh
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London WC1N 3BG, UK.,UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Amy Reddington
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - David Gordon
- Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kay E Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Peter L Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK.,MRC Harwell Institute, Harwell Campus, Didcot, Oxfordshire, OX11 0RD, UK
| |
Collapse
|
13
|
Huang NX, Zou ZY, Xue YJ, Chen HJ. Abnormal cerebral microstructures revealed by diffusion kurtosis imaging in amyotrophic lateral sclerosis. J Magn Reson Imaging 2019; 51:554-562. [PMID: 31206873 DOI: 10.1002/jmri.26843] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which cerebral structural impairment is a consistent feature. PURPOSE To investigate cerebral microstructural changes in ALS using diffusion kurtosis imaging (DKI) for the first time. STUDY TYPE Prospective. SUBJECTS Eighteen ALS patients and 20 healthy controls. FIELD STRENGTH/SEQUENCE DKI images were obtained by a spin-echo echo-planar imaging sequence on a 3T MRI scanner, with three b-values (0, 1000, and 2000 s/mm2 ) and 64 diffusion encoding directions. ASSESSMENT The revised ALS Functional Rating Scale (ALSFRS-R) was administered to assess disease severity, and the symptom duration and disease progression rate were also recorded. Voxel-based analysis was applied to examine the alteration of DKI metrics (ie, mean kurtosis metrics [MK], axial kurtosis [AK], and radial kurtosis [RK]) and the conventional diffusion metrics (ie, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity). STATISTICAL TESTS Student's t-test, chi-square test, and Pearson correlation analysis. RESULTS ALS patients showed MK reductions in gray matter areas, including the bilateral precentral gyrus, bilateral paracentral lobule, and left anterior cingulate gyrus; they also showed decreased MK values in white matter (WM) in the bilateral precentral gyrus, bilateral corona radiata, bilateral middle corpus callosum, left occipital lobe, and right superior parietal lobule. The spatial distribution of the regions with reduced RK was similar to those with decreased MK. No significant AK difference was found between groups. The correlation analysis revealed significant associations between DKI metrics and clinical assessments such as ALSFRS-R score and disease duration. Additionally, several WM regions showed between-group differences in conventional diffusion metrics; but the spatial extent was smaller than that with reduced DKI metrics. DATA CONCLUSION The reduction in DKI metrics indicates decreased microstructural complexity in ALS, involving both motor-related areas and extramotor regions. DKI metrics can serve as potential biomarkers for assessing disease severity. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2020;51:554-562.
Collapse
Affiliation(s)
- Nao-Xin Huang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yun-Jing Xue
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
14
|
Swindell WR, Kruse CPS, List EO, Berryman DE, Kopchick JJ. ALS blood expression profiling identifies new biomarkers, patient subgroups, and evidence for neutrophilia and hypoxia. J Transl Med 2019; 17:170. [PMID: 31118040 PMCID: PMC6530130 DOI: 10.1186/s12967-019-1909-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a debilitating disease with few treatment options. Progress towards new therapies requires validated disease biomarkers, but there is no consensus on which fluid-based measures are most informative. METHODS This study analyzed microarray data derived from blood samples of patients with ALS (n = 396), ALS mimic diseases (n = 75), and healthy controls (n = 645). Goals were to provide in-depth analysis of differentially expressed genes (DEGs), characterize patient-to-patient heterogeneity, and identify candidate biomarkers. RESULTS We identified 752 ALS-increased and 764 ALS-decreased DEGs (FDR < 0.10 with > 10% expression change). Gene expression shifts in ALS blood broadly resembled acute high altitude stress responses. ALS-increased DEGs had high exosome expression, were neutrophil-specific, associated with translation, and overlapped significantly with genes near ALS susceptibility loci (e.g., IFRD1, TBK1, CREB5). ALS-decreased DEGs, in contrast, had low exosome expression, were erythroid lineage-specific, and associated with anemia and blood disorders. Genes encoding neurofilament proteins (NEFH, NEFL) had poor diagnostic accuracy (50-53%). However, support vector machines distinguished ALS patients from ALS mimics and controls with 87% accuracy (sensitivity: 86%, specificity: 87%). Expression profiles were heterogeneous among patients and we identified two subgroups: (i) patients with higher expression of IL6R and myeloid lineage-specific genes and (ii) patients with higher expression of IL23A and lymphoid-specific genes. The gene encoding copper chaperone for superoxide dismutase (CCS) was most strongly associated with survival (HR = 0.77; P = 1.84e-05) and other survival-associated genes were linked to mitochondrial respiration. We identify a 61 gene signature that significantly improves survival prediction when added to Cox proportional hazard models with baseline clinical data (i.e., age at onset, site of onset and sex). Predicted median survival differed 2-fold between patients with favorable and risk-associated gene expression signatures. CONCLUSIONS Peripheral blood analysis informs our understanding of ALS disease mechanisms and genetic association signals. Our findings are consistent with low-grade neutrophilia and hypoxia as ALS phenotypes, with heterogeneity among patients partly driven by differences in myeloid and lymphoid cell abundance. Biomarkers identified in this study require further validation but may provide new tools for research and clinical practice.
Collapse
Affiliation(s)
- William R. Swindell
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
- Department of Internal Medicine, The Jewish Hospital, Cincinnati, OH 45236 USA
| | - Colin P. S. Kruse
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701 USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
| | - Edward O. List
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
- The Diabetes Institute, Ohio University, Athens, OH 45701 USA
| | - Darlene E. Berryman
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
- The Diabetes Institute, Ohio University, Athens, OH 45701 USA
| | - John J. Kopchick
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
- The Diabetes Institute, Ohio University, Athens, OH 45701 USA
| |
Collapse
|
15
|
Silva PR, Nieva GV, Igaz LM. Suppression of Conditional TDP-43 Transgene Expression Differentially Affects Early Cognitive and Social Phenotypes in TDP-43 Mice. Front Genet 2019; 10:369. [PMID: 31068973 PMCID: PMC6491777 DOI: 10.3389/fgene.2019.00369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of TAR DNA-binding protein 43 (TDP-43) is a hallmark feature of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), two fatal neurodegenerative diseases. TDP-43 is a ubiquitously expressed RNA-binding protein with many physiological functions, playing a role in multiple aspects of RNA metabolism. We developed transgenic mice conditionally overexpressing human wild-type TDP-43 protein (hTDP-43-WT) in forebrain neurons, a model that recapitulates several key features of FTD. After post-weaning transgene (TG) induction during 1 month, these mice display an early behavioral phenotype, including impaired cognitive and social function with no substantial motor abnormalities. In order to expand the analysis of this model, we took advantage of the temporal and regional control of TG expression possible in these mice. We behaviorally evaluated mice at two different times: after 2 weeks of post-weaning TG induction (0.5 month group) and after subsequent TG suppression for 2 weeks following that time point [1 month (sup) group]. We found no cognitive abnormalities after 0.5 month of hTDP-43 expression, evaluated with a spatial working memory task (Y-maze test). Suppression of TG expression with doxycycline (Dox) at this time point prevented the development of cognitive deficits previously observed at 1 month post-induction, as revealed by the performance of the 1 month (sup) group. On the other hand, sociability deficits (assessed through the social interaction test) appeared very rapidly after Dox removal (0.5 month) and TG suppression was not sufficient to reverse this phenotype, indicating differential vulnerability to hTDP-43 expression and suppression. Animals evaluated at the early time point (0.5 month) post-induction do not display a motor phenotype, in agreement with the results obtained after 1 month of TG expression. Moreover, all motor tests (open field, accelerated rotarod, limb clasping, hanging wire grip) showed identical responses in both control and bigenic animals in the suppressed group, demonstrating that this protocol and treatment do not cause non-specific effects in motor behavior, which could potentially mask the phenotypes in other domains. Our results show that TDP-43-WT mice have a phenotype that qualifies them as a useful model of FTD and provide valuable information for susceptibility windows in therapeutic strategies for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Pablo R Silva
- IFIBIO Bernardo Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Gabriela V Nieva
- IFIBIO Bernardo Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Lionel M Igaz
- IFIBIO Bernardo Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|