1
|
Yang X, Hua C, Lin L, Ganting Z. Antimicrobial peptides as potential therapy for gastrointestinal cancers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2831-2841. [PMID: 37249612 DOI: 10.1007/s00210-023-02536-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
Since conventional therapy faces limitations in the field of different cancers as well as gastrointestinal cancers, that decrease the survival rate of patients, there is an urgent need to find new effective therapeutic approaches without the adverse effects of the traditional agents. Antimicrobial peptides (AMPs) attract much attention and are well known for their role in innate immunity. These peptides, in addition to their antimicrobial activity, exhibit strong anticancer potential against various types of malignancy. AMPs specifically target tumor cells and have selective toxicity for these cells without affecting normal cells. Here we aim to comprehensively overview the current knowledge in the field of using AMPs as novel therapeutic agents for gastrointestinal cancer.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Heping Hospital Attached to Changzhi Medical College, Changzhi, 046000, China
| | - Cui Hua
- Tangshan Fengnan District Traditional Chinese Medicine Hospital, Tangshan, 063000, China.
| | - Lin Lin
- Tangshan Hongci Hospital, Tangshan, 063000, China
| | - Zhao Ganting
- Heping Hospital Attached to Changzhi Medical College, Changzhi, 046000, China
| |
Collapse
|
2
|
Nan Q, Ye Y, Tao Y, Jiang X, Miao Y, Jia J, Miao J. Alterations in metabolome and microbiome signatures provide clues to the role of antimicrobial peptide KT2 in ulcerative colitis. Front Microbiol 2023; 14:1027658. [PMID: 36846795 PMCID: PMC9947474 DOI: 10.3389/fmicb.2023.1027658] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Ulcerative colitis (UC) is an inflammatory disease of the intestinal tract with unknown etiology. Both genetic and environmental factors are involved in the occurrence and development of UC. Understanding changes in the microbiome and metabolome of the intestinal tract is crucial for the clinical management and treatment of UC. Methods Here, we performed metabolomic and metagenomic profiling of fecal samples from healthy control mice (HC group), DSS (Dextran Sulfate Sodium Salt) -induced UC mice (DSS group), and KT2-treated UC mice (KT2 group). Results and Discussion In total, 51 metabolites were identified after UC induction, enriched in phenylalanine metabolism, while 27 metabolites were identified after KT2 treatment, enriched in histidine metabolism and bile acid biosynthesis. Fecal microbiome analysis revealed significant differences in nine bacterial species associated with the course of UC, including Bacteroides, Odoribacter, and Burkholderiales, which were correlated with aggravated UC, and Anaerotruncus, Lachnospiraceae, which were correlated with alleviated UC. We also identified a disease-associated network connecting the above bacterial species with UC-associated metabolites, including palmitoyl sphingomyelin, deoxycholic acid, biliverdin, and palmitoleic acid. In conclusion, our results indicated that Anaerotruncus, Lachnospiraceae, and Mucispirillum were protective species against DSS-induced UC in mice. The fecal microbiomes and metabolomes differed significantly among the UC mice and KT2-treated and healthy-control mice, providing potential evidence for the discovery of biomarkers of UC.
Collapse
Affiliation(s)
- Qiong Nan
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Ye
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Tao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xinyi Jiang
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yinglei Miao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yinglei Miao,
| | - Jie Jia
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China,Jie Jia,
| | - Jiarong Miao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,*Correspondence: Jiarong Miao,
| |
Collapse
|
3
|
Barragán-Cárdenas AC, Insuasty-Cepeda DS, Cárdenas-Martínez KJ, López-Meza J, Ochoa-Zarzosa A, Umaña-Pérez A, Rivera-Monroy ZJ, García-Castañeda JE. LfcinB-Derived Peptides: Specific and punctual change of an amino acid in monomeric and dimeric sequences increase selective cytotoxicity in colon cancer cell lines. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
4
|
Lath A, Santal AR, Kaur N, Kumari P, Singh NP. Anti-cancer peptides: their current trends in the development of peptide-based therapy and anti-tumor drugs. Biotechnol Genet Eng Rev 2022; 39:45-84. [PMID: 35699384 DOI: 10.1080/02648725.2022.2082157] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human cancer remains a cause of high mortality throughout the world. The conventional methods and therapies currently employed for treatment are followed by moderate-to-severe side effects. They have not generated curative results due to the ineffectiveness of treatments. Besides, the associated high costs, technical requirements, and cytotoxicity further characterize their limitations. Due to relatively higher presidencies, bioactive peptides with anti-cancer attributes have recently become treatment choices within the therapeutic arsenal. The peptides act as potential anti-cancer agents explicitly targeting tumor cells while being less toxic to normal cells. The anti-cancer peptides are isolated from various natural sources, exhibit high selectivity and high penetration efficiency, and could be quickly restructured. The therapeutic benefits of compatible anti-cancer peptides have contributed to the significant expansion of cancer treatment; albeit, the mechanisms by which bioactive peptides inhibit the proliferation of tumor cells remain unclear. This review will provide a framework for assessing anti-cancer peptides' structural and functional aspects. It shall provide appropriate information on their mode of action to support and strengthen efforts to improve cancer prevention. The article will mention the therapeutic health benefits of anti-cancer peptides. Their importance in clinical studies is elaborated for reducing cancer incidences and developing sustainable treatment models.
Collapse
Affiliation(s)
- Amit Lath
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Anita Rani Santal
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Nameet Kaur
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Poonam Kumari
- Sophisticated Analytical Instrumentation Facility, CIL and UCIM, Punjab University, Chandigarh, Inida
| | - Nater Pal Singh
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
5
|
Zhou M, Zou X, Cheng K, Zhong S, Su Y, Wu T, Tao Y, Cong L, Yan B, Jiang Y. The role of cell-penetrating peptides in potential anti-cancer therapy. Clin Transl Med 2022; 12:e822. [PMID: 35593206 PMCID: PMC9121317 DOI: 10.1002/ctm2.822] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
Due to the complex physiological structure, microenvironment and multiple physiological barriers, traditional anti-cancer drugs are severely restricted from reaching the tumour site. Cell-penetrating peptides (CPPs) are typically made up of 5-30 amino acids, and can be utilised as molecular transporters to facilitate the passage of therapeutic drugs across physiological barriers. Up to now, CPPs have widely been used in many anti-cancer treatment strategies, serving as an excellent potential choice for oncology treatment. However, their drawbacks, such as the lack of cell specificity, short duration of action, poor stability in vivo, compatibility problems (i.e. immunogenicity), poor therapeutic efficacy and formation of unwanted metabolites, have limited their further application in cancer treatment. The cellular uptake mechanisms of CPPs involve mainly endocytosis and direct penetration, but still remain highly controversial in academia. The CPPs-based drug delivery strategy could be improved by clever design or chemical modifications to develop the next-generation CPPs with enhanced cell penetration capability, stability and selectivity. In addition, some recent advances in targeted cell penetration that involve CPPs provide some new ideas to optimise CPPs.
Collapse
Affiliation(s)
- Meiling Zhou
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xi Zou
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Kexin Cheng
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Suye Zhong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yangzhou Su
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Tao Wu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Bin Yan
- Department of Pathology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
6
|
Gu D, Nan Q, Miao Y, Yang H, Li M, Ye Y, Miao J. KT2 alleviates ulcerative colitis by reducing Th17 cell differentiation through the miR-302c-5p/STAT3 axis. Eur J Cell Biol 2022; 101:151223. [PMID: 35405463 DOI: 10.1016/j.ejcb.2022.151223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The abnormal differentiation of Th17 cells aggravates ulcerative colitis (UC). Antimicrobial peptides (AMPs) exert pivotal protection functions against UC. KT2 is a cationic AMP that mediates colon cancer development. However, KT2's function in UC remains unclear. METHODS The UC mouse model was induced by administering 2.5% dextran sulfate sodium, and the mice were given an enema of KT2. KT2's function in UC and Th17 cell differentiation in vivo was evaluated through various molecular experiments. The KT2's function in Th17 cell differentiation in vitro was evaluated by the proportion of CD4+ IL-17+ T cells, IL-17 levels, and RORγt expression levels. Meanwhile, the mechanism was assessed through quantitative real-time PCR, various loss-of-function assays, and dual-luciferase reporter gene assay. RESULTS KT2 restrained Th17 cell differentiation in both in vivo and in vitro UC models and slowed the UC process. KT2 elevated miR-302c-5p expression, as well as restrained Th17 cell differentiation by increasing miR-302c-5p. Meanwhile, miR-302c-5p interacted with the signal transducer and activator of transcription 3 (STAT3) and negatively regulated its expression. Furthermore, our data revealed that KT2 restrained the activation of STAT3 by elevating miR-302c-5p, thereby inhibiting Th17 cell differentiation. CONCLUSION KT2 alleviates UC by repressing Th17 cell differentiation through the miR-302c-5p/STAT3 axis.
Collapse
Affiliation(s)
- Dandan Gu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Qiong Nan
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Maojuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Yan Ye
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Jiarong Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China.
| |
Collapse
|
7
|
Nery MF, Rennó M, Picorelli A, Ramos E. A phylogenetic review of cancer resistance highlights evolutionary solutions to Peto’s Paradox. Genet Mol Biol 2022; 45:e20220133. [DOI: 10.1590/1678-4685-gmb-2022-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/03/2022] [Indexed: 12/12/2022] Open
|
8
|
Maraming P, Daduang J, Kah JCY. Conjugation with gold nanoparticles improves the stability of the KT2 peptide and maintains its anticancer properties. RSC Adv 2021; 12:319-325. [PMID: 35424498 PMCID: PMC8978663 DOI: 10.1039/d1ra05980g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022] Open
Abstract
One of the major weaknesses of therapeutic peptides is their sensitivity to degradation by proteolytic enzymes in vivo. Gold nanoparticles (GNPs) are a good carrier for therapeutic peptides to improve their stability and cellular uptake in vitro and in vivo. We conjugated the anticancer KT2 peptide as an anticancer peptide model to PEGylated GNPs (GNPs-PEG) and investigated the peptide stability, cellular uptake and ability of the GNPs-KT2-PEG conjugates to induce MDA-MB-231 human breast cancer cell death. We found that 11 nm GNPs protected the conjugated KT2 peptide from trypsin proteolysis, keeping it stable up to 0.128% trypsin, which is higher than the serum trypsin concentration (range 0.0000285 ± 0.0000125%) reported by Lake-Bakaar, G. et al., 1979. GNPs significantly enhanced the cellular uptake of KT2 peptides after conjugation. Free KT2 peptides pretreated with trypsin were not able to kill MDA-MB-231 cells due to proteolysis, while GNPs-KT2-PEG was still able to exert effective cancer cell killing after trypsin treatment at levels comparable to GNPs-KT2-PEG without enzyme pretreatment. The outcome of this study highlights the utility of conjugated anticancer peptides on nanoparticles to improve peptide stability and retain anticancer ability. One of the major weaknesses of therapeutic peptides is their sensitivity to degradation by proteolytic enzymes in vivo.![]()
Collapse
Affiliation(s)
- Pornsuda Maraming
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University Khon Kaen 40002 Thailand
| | - Jureerut Daduang
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University Khon Kaen 40002 Thailand
| | - James Chen Yong Kah
- Department of Biomedical Engineering, National University of Singapore 4 Engineering Drive 3, Blk E4, #04-08 Singapore 117583
| |
Collapse
|
9
|
Chook CYB, Chen FM, Leung FP, Chen ZY, Wong WT. Potential of crocodile blood as a medication and dietary supplement: A systemic review. Clin Exp Pharmacol Physiol 2021; 48:1043-1058. [PMID: 33987869 DOI: 10.1111/1440-1681.13524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
Crocodile blood has long been used as a traditional medicine in many Asian countries to treat diseases such as asthma, allergies, and many others. Yet, only recently has the safety and effectiveness of using crocodile blood as a medicine been examined using modern scientific methods; with both conserved and novel active components identified from crocodile blood. Further in vitro and in vivo investigations found that crocodile blood can have a wide range of beneficial effects, including antimicrobial, antiviral, anti-oxidative, anti-inflammatory, antitumour effects, anti-anaemia, and enhancement of wound healing. A systematic research of literature published in English-language journals up to April 2020 was conducted in PubMed, Google Scholar, and Web of Science. Based on the biological and chemical knowledge of crocodile immunity and crocodile blood, this article aims to: provide a critical review on the proposed properties of crocodile blood, identify the knowledge gap and offer some insights for future investigations regarding the use of crocodile blood as a medication or dietary supplement.
Collapse
Affiliation(s)
- Chui Yiu Bamboo Chook
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Francis M Chen
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Fung Ping Leung
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhen-Yu Chen
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Tak Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Maraming P, Klaynongsruang S, Boonsiri P, Peng SF, Daduang S, Rungsa P, Tavichakorntrakool R, Chung JG, Daduang J. Anti-metastatic Effects of Cationic KT2 Peptide (a Lysine/Tryptophan-rich Peptide) on Human Melanoma A375.S2 Cells. In Vivo 2021; 35:215-227. [PMID: 33402468 DOI: 10.21873/invivo.12250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIM KT2 is a lysine/tryptophan-rich peptide modified from Crocodylus siamensis Leucrocin I. In this study, we examined the cell toxicity, cellular uptake, anti-migration and anti-invasion activities of KT2 in A375.S2 human melanoma cells. MATERIALS AND METHODS A375.S2 cells were treated with KT2 peptide and then we performed MTT assay, study of cellular uptake by a confocal microscope, wound healing assay, transwell migration/invasion assay, and evaluation of the expression of metastasis-associated proteins. RESULTS KT2 can be internalized through the plasma membrane and can slightly alter cell morphology, decrease the percentage of viable cells and inhibit cell migration and invasion of A375.S2 cells in a dose-dependent manner. This peptide suppressed MMP-2 activity, as measured by gelatine zymography assay. The protein level of MMP-2 was decreased by KT2. KT2 also down-regulated metastasis pathway-related molecules, including FAK, RhoA, ROCK1, GRB2, SOS-1, p-JNK, p-c-Jun, PI3K, p-AKT (Thr308), p-AKT (Ser473), p-p38, MMP-9, NF-kB, and uPA. CONCLUSION These results indicate that KT2 inhibits the migration and invasion of human melanoma cells by decreasing MMP-2 and MMP-9 expression through inhibition of FAK, uPA, MAPK, PI3K/AKT NF-kB, and RhoA-ROCK signalling pathways. These findings suggest that KT2 deserves further investigation as an anti-metastatic agent for human melanoma.
Collapse
Affiliation(s)
- Pornsuda Maraming
- Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand
| | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Patcharee Boonsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Prapenpuksiri Rungsa
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Ratree Tavichakorntrakool
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.;
| | - Jureerut Daduang
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
11
|
Sun ZG, Zhao LH, Yeh SM, Li ZN, Ming X. Research Development, Optimization and Modifications of Anti-cancer Peptides. Mini Rev Med Chem 2021; 21:58-68. [PMID: 32767954 DOI: 10.2174/1389557520666200729163146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 11/22/2022]
Abstract
Anti-cancer peptides play an important role in the area of cancer inhibition. A variety of anti- cancer peptides have emerged through the extraction and structural modification of peptides from biological tissues. This review provides the research background of anti-cancer peptides, the introduction of the mechanism of anti-cancer peptides for inhibition of cancers, the discovery and development along with optimization and modifications of these peptides in the clinical application. In conclusion, it can be said that anti-cancer peptides will play a major role in the future oncologic clinic.
Collapse
Affiliation(s)
- Zhi-Gang Sun
- Central Laboratory, Linyi Central Hospital, No. 17 Jiankang Road, Linyi 276400, China
| | - Liang-Hui Zhao
- Weifang Medical University, No. 7166 Baotong West Street, Weifang 261000, China
| | - Stacy Mary Yeh
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston- Salem, NC 27101, United States
| | - Zhi-Na Li
- Central Laboratory, Linyi Central Hospital, No. 17 Jiankang Road, Linyi 276400, China
| | - Xin Ming
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston- Salem, NC 27101, United States
| |
Collapse
|
12
|
Cell-penetrating peptides in oncologic pharmacotherapy: A review. Pharmacol Res 2020; 162:105231. [PMID: 33027717 DOI: 10.1016/j.phrs.2020.105231] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 01/10/2023]
Abstract
Cancer is the second leading cause of death in the world and its treatment is extremely challenging, mainly due to its complexity. Cell-Penetrating Peptides (CPPs) are peptides that can transport into the cell a wide variety of biologically active conjugates (or cargoes), and are, therefore, promising in the treatment and in the diagnosis of several types of cancer. Some notable examples are TAT and Penetratin, capable of penetrating the central nervous system (CNS) and, therefore, acting in cancers of this system, such as Glioblastoma Multiforme (GBM). These above-mentioned peptides, conjugated with traditional chemotherapeutic such as Doxorubicin (DOX) and Paclitaxel (PTX), have also been shown to induce apoptosis of breast and liver cancer cells, as well as in lung cancer cells, respectively. In other cancers, such as esophageal cancer, the attachment of Magainin 2 (MG2) to Bombesin (MG2B), another CPP, led to pronounced anticancer effects. Other examples are CopA3, that selectively decreased the viability of gastric cancer cells, and the CPP p28. Furthermore, in preclinical tests, the anti-tumor efficacy of this peptide was evaluated on human breast cancer, prostate cancer, ovarian cancer, and melanoma cells in vitro, leading to high expression of p53 and promoting cell cycle arrest. Despite the numerous in vitro and in vivo studies with promising results, and the increasing number of clinical trials using CPPs, few treatments reach the expected clinical efficacy. Usually, their clinical application is limited by its poor aqueous solubility, immunogenicity issues and dose-limiting toxicity. This review describes the most recent advances and innovations in the use of CPPs in several types of cancer, highlighting their crucial importance for various purposes, from therapeutic to diagnosis. Further clinical trials with these peptides are warranted to examine its effects on various types of cancer.
Collapse
|
13
|
Antimicrobial Peptides as New Combination Agents in Cancer Therapeutics: A Promising Protocol against HT-29 Tumoral Spheroids. Int J Mol Sci 2020; 21:ijms21186964. [PMID: 32971958 PMCID: PMC7555805 DOI: 10.3390/ijms21186964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides are molecules synthetized by a large variety of organisms as an innate defense against pathogens. These natural compounds have been identified as promising alternatives to widely used molecules to treat infections and cancer cells. Antimicrobial peptides could be viewed as future chemotherapeutic alternatives, having the advantage of low propensity to drug resistance. In this study, we evaluated the efficiency of the antimicrobial peptide gramicidin A (GA) and the anticancer drug, doxorubicin (Doxo) against the spheroids from colorectal cancer cells (HT-29). The two drugs were applied separately against HT-29 spheroids as well as together to determine if they can act synergistically. The spheroid evolution, cell viability, and ATP levels were monitored at 24 and 48 h after the applied treatments. The results show significant drops in cell viability and cellular ATP levels for all the experimental treatments. The simultaneous use of the two compounds (GA and Doxo) seems to cause a synergistic effect against the spheroids.
Collapse
|
14
|
Sharma P, Kaur H, Kehinde BA, Chhikara N, Sharma D, Panghal A. Food-Derived Anticancer Peptides: A Review. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10063-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
NGO-SON A, KATEKAEW S. Purification and characterization of angiotensin converting enzyme-inhibitory derived from crocodile blood hydrolysates. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.08318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|