1
|
Rimskaya E, Gorevoy A, Shelygina S, Perevedentseva E, Timurzieva A, Saraeva I, Melnik N, Kudryashov S, Kuchmizhak A. Multi-Wavelength Raman Differentiation of Malignant Skin Neoplasms. Int J Mol Sci 2024; 25:7422. [PMID: 39000528 PMCID: PMC11242141 DOI: 10.3390/ijms25137422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Raman microspectroscopy has become an effective method for analyzing the molecular appearance of biomarkers in skin tissue. For the first time, we acquired in vitro Raman spectra of healthy and malignant skin tissues, including basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), at 532 and 785 nm laser excitation wavelengths in the wavenumber ranges of 900-1800 cm-1 and 2800-3100 cm-1 and analyzed them to find spectral features for differentiation between the three classes of the samples. The intensity ratios of the bands at 1268, 1336, and 1445 cm-1 appeared to be the most reliable criteria for the three-class differentiation at 532 nm excitation, whereas the bands from the higher wavenumber region (2850, 2880, and 2930 cm-1) were a robust measure of the increased protein/lipid ratio in the tumors at both excitation wavelengths. Selecting ratios of the three bands from the merged (532 + 785) dataset made it possible to increase the accuracy to 87% for the three classes and reach the specificities for BCC + SCC equal to 87% and 81% for the sensitivities of 95% and 99%, respectively. Development of multi-wavelength excitation Raman spectroscopic techniques provides a versatile non-invasive tool for research of the processes in malignant skin tumors, as well as other forms of cancer.
Collapse
Affiliation(s)
- Elena Rimskaya
- Lebedev Physical Institute, 119991 Moscow, Russia; (E.R.); (A.G.); (S.S.); (E.P.); (A.T.); (I.S.); (N.M.); (S.K.)
| | - Alexey Gorevoy
- Lebedev Physical Institute, 119991 Moscow, Russia; (E.R.); (A.G.); (S.S.); (E.P.); (A.T.); (I.S.); (N.M.); (S.K.)
| | - Svetlana Shelygina
- Lebedev Physical Institute, 119991 Moscow, Russia; (E.R.); (A.G.); (S.S.); (E.P.); (A.T.); (I.S.); (N.M.); (S.K.)
| | - Elena Perevedentseva
- Lebedev Physical Institute, 119991 Moscow, Russia; (E.R.); (A.G.); (S.S.); (E.P.); (A.T.); (I.S.); (N.M.); (S.K.)
| | - Alina Timurzieva
- Lebedev Physical Institute, 119991 Moscow, Russia; (E.R.); (A.G.); (S.S.); (E.P.); (A.T.); (I.S.); (N.M.); (S.K.)
- Semashko National Research Institute of Public Health, 105064 Moscow, Russia
| | - Irina Saraeva
- Lebedev Physical Institute, 119991 Moscow, Russia; (E.R.); (A.G.); (S.S.); (E.P.); (A.T.); (I.S.); (N.M.); (S.K.)
| | - Nikolay Melnik
- Lebedev Physical Institute, 119991 Moscow, Russia; (E.R.); (A.G.); (S.S.); (E.P.); (A.T.); (I.S.); (N.M.); (S.K.)
| | - Sergey Kudryashov
- Lebedev Physical Institute, 119991 Moscow, Russia; (E.R.); (A.G.); (S.S.); (E.P.); (A.T.); (I.S.); (N.M.); (S.K.)
| | - Aleksandr Kuchmizhak
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, 690041 Vladivostok, Russia
- Far Eastern Federal University, 690922 Vladivostok, Russia
| |
Collapse
|
2
|
Miler I, Rabasovic MD, Askrabic S, Stylianou A, Korac B, Korac A. Short-Term l-arginine Treatment Mitigates Early Damage of Dermal Collagen Induced by Diabetes. Bioengineering (Basel) 2024; 11:407. [PMID: 38671828 PMCID: PMC11048012 DOI: 10.3390/bioengineering11040407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Changes in the structural properties of the skin due to collagen alterations are an important factor in diabetic skin complications. Using a combination of photonic methods as an optic diagnostic tool, we investigated the structural alteration in rat dermal collagen I in diabetes, and after short-term l-arginine treatment. The multiplex approach shows that in the early phase of diabetes, collagen fibers are partially damaged, resulting in the heterogeneity of fibers, e.g., "patchy patterns" of highly ordered/disordered fibers, while l-arginine treatment counteracts to some extent the conformational changes in collagen-induced by diabetes and mitigates the damage. Raman spectroscopy shows intense collagen conformational changes via amides I and II in diabetes, suggesting that diabetes-induced structural changes in collagen originate predominantly from individual collagen molecules rather than supramolecular structures. There is a clear increase in the amounts of newly synthesized proline and hydroxyproline after treatment with l-arginine, reflecting the changed collagen content. This suggests that it might be useful for treating and stopping collagen damage early on in diabetic skin. Our results demonstrate that l-arginine attenuates the early collagen I alteration caused by diabetes and that it could be used to treat and prevent collagen damage in diabetic skin at a very early stage.
Collapse
Affiliation(s)
- Irena Miler
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia;
| | - Mihailo D. Rabasovic
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11000 Belgrade, Serbia; (S.A.)
| | - Sonja Askrabic
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11000 Belgrade, Serbia; (S.A.)
| | - Andreas Stylianou
- School of Science, European University Cyprus, 6 Diogenous Str., Egkomi, Nicosia 2404, Cyprus;
| | - Bato Korac
- Institute for Biological Research “Sinisa Stankovic”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia;
| | - Aleksandra Korac
- Center for Electron Microscopy, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Liu Y, Ye F, Yang C, Jiang H. Use of in vivo Raman spectroscopy and cryoablation for diagnosis and treatment of bladder cancer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123707. [PMID: 38043292 DOI: 10.1016/j.saa.2023.123707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Transurethral resection of bladder tumor (TURBT) is the first-line treatment option for non-muscle invasive bladder cancer (NMIBC), but residual tumor often remains after TURBT, thereby leading to cancer recurrence. Here, we introduce combined use of in vivo Raman spectroscopy and in vivo cryoablation as a new approach to detect and remove residual bladder tumor during TURBT. Bladder cancer (BCa) patients treated with TURBT at our urological department between Dec 2019 and Jan 2021 were collected. First, Raman signals were collected from 74 BCa patients to build reference spectra of normal bladder tissue and of bladder cancers of different pathological types. Then, another 53 BCa patients were randomly categorized into two groups, 26 patients accepted traditional TURBT, 27 patients accepted TURBT followed by Raman scanning and cryoablation if Raman detected existence of residual tumor. The recurrence rates of the two groups until Oct 2022 were compared. Raman was capable of discriminating normal bladder tissue and BCa with a sensitivity and specificity of 90.5% and 80.8 %; and discriminating invasive (T1, T2) and noninvasive (Ta) BCa with a sensitivity and specificity of 83.3 % and 87.3 %. During follow-up, 2 in 27 patients had cancer recurrence in Raman-Cryoablation group, while 8 in 26 patients had cancer recurrence in traditional TURBT group. Combined use of Raman and cryoablation significantly reduced cancer recurrence (p = 0.0394). Raman and cryoablation can serve as an adjuvant therapy to TURBT to improve therapeutic effects and reduce recurrence rate.
Collapse
Affiliation(s)
- Yufei Liu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
4
|
El Rhabori S, El Aissouq A, Daoui O, Elkhattabi S, Chtita S, Khalil F. Design of new molecules against cervical cancer using DFT, theoretical spectroscopy, 2D/3D-QSAR, molecular docking, pharmacophore and ADMET investigations. Heliyon 2024; 10:e24551. [PMID: 38318045 PMCID: PMC10839811 DOI: 10.1016/j.heliyon.2024.e24551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/13/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Cervical cancer is a major health problem of women. Hormone therapy, via aromatase inhibition, has been proposed as a promising way of blocking estrogen production as well as treating the progression of estrogen-dependent cancer. To overcome the challenging complexities of costly drug design, in-silico strategy, integrating Structure-Based Drug Design (SBDD) and Ligand-Based Drug Design (LBDD), was applied to large representative databases of 39 quinazoline and thioquinazolinone compound derivatives. Quantum chemical and physicochemical descriptors have been investigated using density functional theory (DFT) and MM2 force fields, respectively, to develop 2D-QSAR models, while CoMSIA and CoMFA descriptors were used to build 3D-QSAR models. The robustness and predictive power of the reliable models were verified, via several validation methods, leading to the design of 6 new drug-candidates. Afterwards, 2 ligands were carefully selected using virtual screening methods, taking into account the applicability domain, synthetic accessibility, and Lipinski's criteria. Molecular docking and pharmacophore modelling studies were performed to examine potential interactions with aromatase (PDB ID: 3EQM). Finally, the ADMET properties were investigated in order to select potential drug-candidates against cervical cancer for experimental in vitro and in vivo testing.
Collapse
Affiliation(s)
- Said El Rhabori
- Laboratory of Processes, Materials and Environment (LPME), Sidi Mohamed Ben Abdellah University, Faculty of Science and Technology - Fez, Morocco
| | - Abdellah El Aissouq
- Laboratory of Processes, Materials and Environment (LPME), Sidi Mohamed Ben Abdellah University, Faculty of Science and Technology - Fez, Morocco
| | - Ossama Daoui
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Souad Elkhattabi
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Morocco
| | - Fouad Khalil
- Laboratory of Processes, Materials and Environment (LPME), Sidi Mohamed Ben Abdellah University, Faculty of Science and Technology - Fez, Morocco
| |
Collapse
|
5
|
Rimskaya E, Shelygina S, Timurzieva A, Saraeva I, Perevedentseva E, Melnik N, Kudrin K, Reshetov D, Kudryashov S. Multispectral Raman Differentiation of Malignant Skin Neoplasms In Vitro: Search for Specific Biomarkers and Optimal Wavelengths. Int J Mol Sci 2023; 24:14748. [PMID: 37834196 PMCID: PMC10572672 DOI: 10.3390/ijms241914748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Confocal scanning Raman and photoluminescence (PL) microspectroscopy is a structure-sensitive optical method that allows the non-invasive analysis of biomarkers in the skin tissue. We used it to perform in vitro diagnostics of different malignant skin neoplasms at several excitation wavelengths (532, 785 and 1064 nm). Distinct spectral differences were noticed in the Raman spectra of basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), compared with healthy skin. Our analysis of Raman/PL spectra at the different excitation wavelengths enabled us to propose two novel wavelength-independent spectral criteria (intensity ratios for 1302 cm-1 and 1445 cm-1 bands, 1745 cm-1 and 1445 cm-1 bands), related to the different vibrational "fingerprints" of cell membrane lipids as biomarkers, which was confirmed by the multivariate curve resolution (MCR) technique. These criteria allowed us to differentiate healthy skin from BCC and SCC with sensitivity and specificity higher than 95%, demonstrating high clinical importance in the differential diagnostics of skin tumors.
Collapse
Affiliation(s)
- Elena Rimskaya
- Lebedev Physical Institute, 119991 Moscow, Russia; (E.R.); (S.S.); (A.T.); (I.S.); (E.P.); (N.M.); (K.K.)
| | - Svetlana Shelygina
- Lebedev Physical Institute, 119991 Moscow, Russia; (E.R.); (S.S.); (A.T.); (I.S.); (E.P.); (N.M.); (K.K.)
| | - Alina Timurzieva
- Lebedev Physical Institute, 119991 Moscow, Russia; (E.R.); (S.S.); (A.T.); (I.S.); (E.P.); (N.M.); (K.K.)
- Semashko National Research Institute of Public Health, 105064 Moscow, Russia
| | - Irina Saraeva
- Lebedev Physical Institute, 119991 Moscow, Russia; (E.R.); (S.S.); (A.T.); (I.S.); (E.P.); (N.M.); (K.K.)
| | - Elena Perevedentseva
- Lebedev Physical Institute, 119991 Moscow, Russia; (E.R.); (S.S.); (A.T.); (I.S.); (E.P.); (N.M.); (K.K.)
| | - Nikolay Melnik
- Lebedev Physical Institute, 119991 Moscow, Russia; (E.R.); (S.S.); (A.T.); (I.S.); (E.P.); (N.M.); (K.K.)
| | - Konstantin Kudrin
- Lebedev Physical Institute, 119991 Moscow, Russia; (E.R.); (S.S.); (A.T.); (I.S.); (E.P.); (N.M.); (K.K.)
- Department of Oncology, Radiotherapy and Reconstructive Surgery, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Dmitry Reshetov
- Department of Oncology and Radiation Therapy, Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia;
| | - Sergey Kudryashov
- Lebedev Physical Institute, 119991 Moscow, Russia; (E.R.); (S.S.); (A.T.); (I.S.); (E.P.); (N.M.); (K.K.)
| |
Collapse
|
6
|
MARKOUIZOU ATHINA, ANASTASSOPOULOU JANE, KOLOVOU PANAYIOTA, THEOPHANIDES THEOPHILE, TSEKERIS PERIKLES. Fourier Transform Infrared Spectroscopy in the Study of Discrimination of Lobular Breast Cancers. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:750-757. [PMID: 36340465 PMCID: PMC9628140 DOI: 10.21873/cdp.10170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND/AIM The early diagnosis of breast cancer plays an important role in reducing mortality and optimizing the prognosis of the disease. The existing visual and histopathological methods do not give any information at a molecular level. Fourier transform infrared spectroscopy does not require any preparation, such as fixation and histological stains. The collected infrared spectral "biomarker bands" give information at a molecular level and could be used for biomarker screening, in order to minimize the false-positive or false-negative results. MATERIALS AND METHODS For this prospective study, nine biopsies of lobular carcinoma (7 in situ and 2 invasive) and the adjacent healthy region of the biopsies were used. Each infrared spectrum consisted of 120 scans/spectrum (120 co-added spectra) at a spectral resolution of 4 cm -1 . RESULTS The infrared spectral analysis revealed three important "diagnostic spectral regions" between 3,300-2,850 cm -1 , 1,700-1,500 cm -1 , and 850-800 cm -1 , which are related to membrane, collagen, and DNA configuration damage, respectively. The shift of the absorption band at 1,161 cm -1 at higher wave numbers up to 1,172 cm -1 is assigned to vC-O-C bonds due to membrane, protein, and DNA glycosylation. CONCLUSION The "biomarker bands" at 1,172 cm -1 can be used as "diagnostic marker bands" for cancer progression. The shift of the absorbance band at 825 cm -1 of the native configuration of B-DNA to lower wavenumbers at 810 cm -1 Z-DNA in grade III, suggests the irreversible stage of the disease. The detection and possibility to differentiate the DNA structures may allow detection of carcinogenesis at the early stage of the disease, and development of new anticancer therapies.
Collapse
Affiliation(s)
- ATHINA MARKOUIZOU
- Radiation-Oncology Department, Metaxa Cancer Hospital of Piraeus, Piraeus, Greece
| | - JANE ANASTASSOPOULOU
- Chemical Engineering School, Radiation Chemistry & Biospectroscopy, National Technical University of Athens, Athens, Greece
| | | | - THEOPHILE THEOPHANIDES
- Chemical Engineering School, Radiation Chemistry & Biospectroscopy, National Technical University of Athens, Athens, Greece
| | - PERIKLES TSEKERIS
- Department of Radiation-Oncology, University Hospital of Ioannina, Ioannina, Greece
| |
Collapse
|
7
|
Adachi T, Miyamoto N, Imamura H, Yamamoto T, Marin E, Zhu W, Kobara M, Sowa Y, Tahara Y, Kanamura N, Akiyoshi K, Mazda O, Nishimura I, Pezzotti G. Three-Dimensional Culture of Cartilage Tissue on Nanogel-Cross-Linked Porous Freeze-Dried Gel Scaffold for Regenerative Cartilage Therapy: A Vibrational Spectroscopy Evaluation. Int J Mol Sci 2022; 23:ijms23158099. [PMID: 35897669 PMCID: PMC9332688 DOI: 10.3390/ijms23158099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
This study presents a set of vibrational characterizations on a nanogel-cross-linked porous freeze-dried gel (NanoCliP-FD gel) scaffold for tissue engineering and regenerative therapy. This scaffold is designed for the in vitro culture of high-quality cartilage tissue to be then transplanted in vivo to enable recovery from congenital malformations in the maxillofacial area or crippling jaw disease. The three-dimensional scaffold for in-plate culture is designed with interface chemistry capable of stimulating cartilage formation and maintaining its structure through counteracting the dedifferentiation of mesenchymal stem cells (MSCs) during the formation of cartilage tissue. The developed interface chemistry enabled high efficiency in both growth rate and tissue quality, thus satisfying the requirements of large volumes, high matrix quality, and superior mechanical properties needed in cartilage transplants. We characterized the cartilage tissue in vitro grown on a NanoCliP-FD gel scaffold by human periodontal ligament-derived stem cells (a type of MSC) with cartilage grown by the same cells and under the same conditions on a conventional (porous) atelocollagen scaffold. The cartilage tissues produced by the MSCs on different scaffolds were comparatively evaluated by immunohistochemical and spectroscopic analyses. Cartilage differentiation occurred at a higher rate when MSCs were cultured on the NanoCliP-FD gel scaffold compared to the atelocollagen scaffold, and produced a tissue richer in cartilage matrix. In situ spectroscopic analyses revealed the cell/scaffold interactive mechanisms by which the NanoCliP-FD gel scaffold stimulated such increased efficiency in cartilage matrix formation. In addition to demonstrating the high potential of human periodontal ligament-derived stem cell cultures on NanoCliP-FD gel scaffolds in regenerative cartilage therapy, the present study also highlights the novelty of Raman spectroscopy as a non-destructive method for the concurrent evaluation of matrix quality and cell metabolic response. In situ Raman analyses on living cells unveiled for the first time the underlying physiological mechanisms behind such improved chondrocyte performance.
Collapse
Affiliation(s)
- Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (H.I.); (T.Y.); (E.M.); (N.K.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (Y.S.); (O.M.)
- Correspondence: (T.A.); (G.P.)
| | - Nao Miyamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (H.I.); (T.Y.); (E.M.); (N.K.)
- Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hayata Imamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (H.I.); (T.Y.); (E.M.); (N.K.)
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan;
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (H.I.); (T.Y.); (E.M.); (N.K.)
| | - Elia Marin
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (H.I.); (T.Y.); (E.M.); (N.K.)
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan;
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan;
| | - Miyuki Kobara
- Department of Clinical Pharmacology, Division of Pathological Science, Kyoto Pharmaceutical University, Misasagi Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan;
| | - Yoshihiro Sowa
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (Y.S.); (O.M.)
- Department of Plastic and Reconstructive Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiro Tahara
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan;
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (H.I.); (T.Y.); (E.M.); (N.K.)
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (Y.S.); (O.M.)
| | - Ichiro Nishimura
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA;
- Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Giuseppe Pezzotti
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (H.I.); (T.Y.); (E.M.); (N.K.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (Y.S.); (O.M.)
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan;
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Correspondence: (T.A.); (G.P.)
| |
Collapse
|
8
|
Pezzotti G, Zhu W, Terai Y, Marin E, Boschetto F, Kawamoto K, Itaka K. Raman spectroscopic insight into osteoarthritic cartilage regeneration by mRNA therapeutics encoding cartilage-anabolic transcription factor Runx1. Mater Today Bio 2022; 13:100210. [PMID: 35281370 PMCID: PMC8913780 DOI: 10.1016/j.mtbio.2022.100210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 11/05/2022] Open
Abstract
While joint arthroplasty remains nowadays the most popular option available to repair chronically degenerated osteoarthritic joints, possibilities are recently emerging for regeneration of damaged cartilage rather than its replacement with artificial biomaterials. This latter strategy could allow avoiding the quite intrusive surgical procedures associated with total joint replacement. Building upon this notion, we first apply Raman spectroscopy to characterize diseased cartilage in a mice model of instability-induced knee osteoarthritis (OA) upon medial collateral ligament (MCL) and medial meniscus (MM) transections. Then, we examine the same OA model after cartilage regeneration by means of messenger RNA (mRNA) delivery of a cartilage-anabolic runt-related transcription factor 1 (RUNX1). Raman spectroscopy is shown to substantiate at the molecular scale the therapeutic effect of the Runx1 mRNA cartilage regeneration approach. This study demonstrates how the Raman spectroscopic method could support and accelerate the development of new therapies for cartilage diseases.
Collapse
|
9
|
Shakya BR, Teppo HR, Rieppo L. Discrimination of melanoma cell lines with Fourier Transform Infrared (FTIR) spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 254:119665. [PMID: 33744696 DOI: 10.1016/j.saa.2021.119665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Among skin cancers, melanoma is the lethal form and the leading cause of death in humans. Melanoma begins in melanocytes and is curable at early stages. Thus, early detection and evaluation of its metastatic potential are crucial for effective clinical intervention. Fourier transform infrared (FTIR) spectroscopy has gained considerable attention due to its versatility in detecting biochemical and biological features present in the samples. Changes in these features are used to differentiate between samples at different stages of the disease. Previously, FTIR spectroscopy has been mostly used to distinguish between healthy and diseased conditions. With this study, we aim to discriminate between different melanoma cell lines based on their FTIR spectra. Formalin-fixed paraffin embedded samples from three melanoma cell lines (IPC-298, SK-MEL-30 and COLO-800) were used. Statistically significant differences were observed in the prominent spectral bands of three cell lines along with shifts in peak positions. A partial least square discriminant analysis (PLS-DA) model built for the classification of three cell lines showed an overall accuracy of 92.6% with a sensitivity of 85%, 95.75%, 96.54%, and specificity of 97.80%, 92.14%, 98.64% for the differentiation of IPC-298, SK-MEL-30, and COLO-800, respectively. The results suggest that FTIR spectroscopy can differentiate between different melanoma cell lines and thus potentially characterize the metastatic potential of melanoma.
Collapse
Affiliation(s)
- Bijay Ratna Shakya
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu/Faculty of Medicine, Aapistie 5 A, 90220 Oulu, Finland.
| | - Hanna-Riikka Teppo
- Cancer Research and Translational Medicine Research Unit, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland; Department of Pathology, Oulu University Hospital, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland.
| | - Lassi Rieppo
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu/Faculty of Medicine, Aapistie 5 A, 90220 Oulu, Finland.
| |
Collapse
|
10
|
Stępień EŁ, Kamińska A, Surman M, Karbowska D, Wróbel A, Przybyło M. Fourier-Transform InfraRed (FT-IR) spectroscopy to show alterations in molecular composition of EV subpopulations from melanoma cell lines in different malignancy. Biochem Biophys Rep 2021; 25:100888. [PMID: 33458258 PMCID: PMC7797365 DOI: 10.1016/j.bbrep.2020.100888] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/10/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Background Melanoma cells release extracellular vesicles (EVs) subpopulations which differ in size, phenotype and molecular content. Melanoma derived EVs play a role in the development and progression of cancer by delivering surface receptors and bioactive (proteins, lipids, nucleic acids) or signaling molecules to target cells. Methods We applied Fourier Transform Infrared Spectroscopy (FTIR) to compare infrared spectra of absorption for different subpopulations of EVs originating from normal human melanocytes, primary cutaneous melanoma (WM115) and metastatic cutaneous melanoma (WM266-4). Results FTIR results showed that exosome and ectosome populations differ in content of protein and lipid components. We obtained higher lipid to protein ratio for ectosomes in comparison with exosomes what confirms that exosomes are very densely packed with protein cargo. We identified the lowest value of saturated fatty acids/unsaturated fatty acids parameter in the metastatic WM266-4 cell line and ectosomes derived from WM266-4 cell line in comparison with normal melanocytes and the primary WM115 cell line. We identified the alterations in the content of secondary structures of proteins present in EV subpopulations originating from melanocytes and melanoma cells in different malignancy. Conclusions Obtained results revealed differences in the molecular composition of melanoma derived EVs subtypes, including protein secondary structure, and showed progressive structural changes during cancer development. Fourier-Transformed Infrared spectroscopy allows recognition lipid and protein content in extracellular vesicles (EVs). Subpopulations of (EVs) from human melanocytes and melanoma cells contain distinct lipid composition and protein structure. Ectosomes from malignant human melanoma are rich in saturated fatty acids and random coiled proteins. Exosomes from malignant human melanoma are bigger in compare to those from melanocytes and have higher lipid to amid ratio.
Collapse
Affiliation(s)
- Ewa Ł Stępień
- Department of Medical Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348, Kraków, Poland
| | - Agnieszka Kamińska
- Department of Medical Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348, Kraków, Poland
| | - Magdalena Surman
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387, Kraków, Poland
| | - Dagmara Karbowska
- Department of Medical Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348, Kraków, Poland
| | - Andrzej Wróbel
- Department of Medical Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348, Kraków, Poland
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387, Kraków, Poland
| |
Collapse
|
11
|
Hamad AM, Fahmy HM, Elshemey WM. FT-IR spectral features of DNA as markers for the detection of liver preservation using irradiation. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Silveira L, Pasqualucci CA, Bodanese B, Pacheco MTT, Zângaro RA. Normal-subtracted preprocessing of Raman spectra aiming to discriminate skin actinic keratosis and neoplasias from benign lesions and normal skin tissues. Lasers Med Sci 2019; 35:1141-1151. [PMID: 31853808 DOI: 10.1007/s10103-019-02935-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 12/05/2019] [Indexed: 12/29/2022]
Abstract
The differences in the biochemistry of normal and cancerous tissue could be better exploited by Raman spectroscopy when the spectral information from normal tissue is subtracted from the abnormal tissues. In this study, we evaluated the use of the normal-subtracted spectra to evidence the biochemical differences in the pre-cancerous and cancerous skin tissues compared with normal skin, and to discriminate the groups with altered tissues with respect to the normal sites. Raman spectra from skin tissues [normal (Normal), benign (dermatitis-BEN), basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and actinic keratosis (KER)] were obtained in vivo (Silveira et al., 2015, doi: https://doi.org/10.1002/lsm.22318) and used to develop the spectral model. The mean spectrum of the normal sites (circumjacent to each lesion) from each subject was calculated and subtracted from each individual spectrum of that particular subject independently of the group (Normal, BEN, BCC, SCC, KERAT). The mean spectra of each altered group and the mean spectra of the differences were firstly evaluated in terms of biochemical contribution or differentiation comparing the normal site. Then, the normal-subtracted spectra were submitted to discriminant models based on partial least squares and principal components regression (PLS-DA and PCR-DA), and the discrimination were compared with the model using non-subtracted spectra. Results showed that the peaks of nucleic acids, lipids (triolein) and proteins (elastin and collagens I, III, and IV) were significantly different in the lesions, higher for the pre- and neoplastic lesions compared with normal and benign. The PLS-DA showed that the groups could be discriminated with 90.3% accuracy when the mean-subtracted spectra were used, contrasting with 75.1% accuracy when the non-subtracted spectra were used. Also, when discriminating non-neoplastic tissue (Normal + BEN) from pre- and neoplastic sites (BCC + SCC + KERAT), the accuracy increases to 92.5% for the normal-subtracted compared with 85.3% for the non-subtracted. The subtraction of the mean normal spectrum from the subject obtained circumjacent to each lesion could significantly increase the diagnostic capability of the Raman-based discrimination algorithm.
Collapse
Affiliation(s)
- Landulfo Silveira
- Center for Innovation, Technology and Education - CITE, Universidade Anhembi Morumbi - UAM, Estr. Dr. Altino Bondensan, 500, Sao Jose dos Campos, SP, 12247-016, Brazil.
| | - Carlos Augusto Pasqualucci
- Department of Cardiovascular Pathology, Faculty of Medicine, Universidade de São Paulo - USP, Av. Dr. Arnaldo, 455 - Cerqueira César, Sao Paulo, SP, 01246-903, Brazil
| | - Benito Bodanese
- Department of Oncology, Hospital Regional do Oeste - HRO, R. Florianópolis, 1448-E, Chapecó, SC, 89812-021, Brazil
| | - Marcos Tadeu Tavares Pacheco
- Center for Innovation, Technology and Education - CITE, Universidade Anhembi Morumbi - UAM, Estr. Dr. Altino Bondensan, 500, Sao Jose dos Campos, SP, 12247-016, Brazil
| | - Renato Amaro Zângaro
- Center for Innovation, Technology and Education - CITE, Universidade Anhembi Morumbi - UAM, Estr. Dr. Altino Bondensan, 500, Sao Jose dos Campos, SP, 12247-016, Brazil
| |
Collapse
|