1
|
Thamotharan S, Ghosh S, James-Allan L, Lei MYY, Janzen C, Devaskar SU. Circulating extracellular vesicles exhibit a differential miRNA profile in gestational diabetes mellitus pregnancies. PLoS One 2022; 17:e0267564. [PMID: 35613088 PMCID: PMC9132306 DOI: 10.1371/journal.pone.0267564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/11/2022] [Indexed: 11/27/2022] Open
Abstract
We undertook a prospective temporal study collecting blood samples from consenting pregnant women, to test the hypothesis that circulating extracellular vesicles (EVs) carrying specific non-coding microRNA signatures can underlie gestational diabetes mellitus (GDM). To test this hypothesis, miRNA cargo of isolated and characterized EVs revealed contributions from the placenta and differential expression at all three trimesters and at delivery between pregnant and non-pregnant states. Many miRNAs originate from the placental-specific chromosome 19 microRNA cluster (19MC) and chromosome 14 microRNA cluster (14MC). Further a positive correlation emerged between third trimester and at delivery EVs containing miRNAs and those expressed by the corresponding post-parturient placentas (R value = 0.63 to 0.69, p value = 2.2X10-16), in normal and GDM. In addition, distinct differences at all trimesters emerged between women who subsequently developed GDM. Analysis by logistic regression with leave-one-out-cross validation revealed the optimal combination of miRNAs using all the circulating miRNAs (miR-92a-3p, miR-192-5p, miR-451a, miR-122-5p), or using only the differentially expressed miRNAs (has-miR-92a-3p, hsa-miR-92b-3p, hsa-miR-100-5p and hsa-miR-125a-3p) in GDM during the first trimester. As an initial step, both sets of miRNAs demonstrated a predictive probability with an area under the curve of 0.95 to 0.96. These miRNAs targeted genes involved in cell metabolism, proliferation and immune tolerance. In particular genes of the P-I-3-Kinase, FOXO, insulin signaling and glucogenic pathways were targeted, suggestive of placental connectivity with various maternal organs/cells, altering physiology along with pathogenic mechanisms underlying the subsequent development of GDM. We conclude that circulating EVs originating from the placenta with their miRNA cargo communicate and regulate signaling pathways in maternal organs, thereby predetermining development of GDM.
Collapse
Affiliation(s)
- Shanthie Thamotharan
- Departments of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Shubhamoy Ghosh
- Departments of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Laura James-Allan
- Departments of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Margarida Y. Y. Lei
- Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Carla Janzen
- Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Sherin U. Devaskar
- Departments of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| |
Collapse
|
2
|
Deconstructing Immune Cell Infiltration in Human Colorectal Cancer: A Systematic Spatiotemporal Evaluation. Genes (Basel) 2022; 13:genes13040589. [PMID: 35456394 PMCID: PMC9024576 DOI: 10.3390/genes13040589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer-related immunity has been identified as playing a key role in the outcome of colorectal cancer (CRC); however, the exact mechanisms are only partially understood. In this study, we evaluated a total of 242 surgical specimen of CRC patients using tissue microarrays and immunohistochemistry to evaluate tumor infiltrating immune cells (CD3, CD4, CD8, CD20, CD23, CD45 and CD56) and immune checkpoint markers (CTLA-4, PD-L1, PD-1) in systematically selected tumor regions and their corresponding lymph nodes, as well as in liver metastases. Additionally, an immune panel gene expression assay was performed on 12 primary tumors and 12 consecutive liver metastases. A higher number of natural killer cells and more mature B cells along with PD-1+ expressing cells were observed in the main tumor area as compared to metastases. A higher number of metastatic lymph nodes were associated with significantly lower B cell counts. With more advanced lymph node metastatic status, higher leukocyte—particularly T cell numbers—were observed. Eleven differentially expressed immune-related genes were found between primary tumors and liver metastases. Also, alterations of the innate immune response and the tumor necrosis factor superfamily pathways had been identified.
Collapse
|
3
|
Yan B, Xiong J, Ye Q, Xue T, Xiang J, Xu M, Li F, Wen W. Correlation and prognostic implications of intratumor and tumor draining lymph node Foxp3 + T regulatory cells in colorectal cancer. BMC Gastroenterol 2022; 22:122. [PMID: 35296257 PMCID: PMC8925044 DOI: 10.1186/s12876-022-02205-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The prognostic value of intratumor T regulatory cells (Tregs) in colorectal cancer (CRC) was previously reported, but the role of these cells in tumor draining lymph nodes (TDLNs) was less addressed. METHODS A total of 150 CRC stages I-IV were retrospectively enrolled. Intratumor and TDLN Tregs were examined by immunohistochemical assay. The association of these cells was estimated by Pearson correlation. Survival analyses of subgroups were conducted by Kaplan-Meier curves, and the log-rank test and risk factors for survival were tested by the Cox proportional hazard model. RESULTS High accumulation of Tregs in tumors was significant in patients with younger age and good histological grade, where enrichment of these cells in TDLNs was more apparent in those with node-negative disease and early TNM stage disease, both of which were more common in early T stage cases. A significant correlation of intratumoral and TDLN Tregs was detected. Patients with higher intratumoral Tregs displayed significantly better PFS and OS than those with lower Tregs. However, no such differences were found, but a similar prognostic prediction trend was found for these cells in TDLNs. Finally, intratumoral Tregs were an independent prognostic factor for both PFS (HR = 0.97, 95% CI 0.95-0.99, P < 0.01) and OS (HR = 0.98, 95% CI 0.95-1.00, P = 0.04) in the patients. CONCLUSIONS Higher intratumor Tregs were associated with better survival in CRC. Although no such role was found for these cells in TDLNs, the positive correlation and similar prognostic prediction trend with their intratumoral counterparts may indicate a parallelized function of these cells in CRC.
Collapse
Affiliation(s)
- Bing Yan
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China
| | - Jianmei Xiong
- Department of Neurology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan Province, 572000, People's Republic of China
| | - Qianwen Ye
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China
| | - Tianhui Xue
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China
| | - Jia Xiang
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China
| | - Mingyue Xu
- Department of General Surgery, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan Province, 572000, People's Republic of China
| | - Fang Li
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China.
| | - Wei Wen
- Department of General Surgery, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan Province, 572000, People's Republic of China.
| |
Collapse
|
4
|
Bandaru SS, Boyilla R, Merchant N, Nagaraju GP, El-Rayes B. Targeting T regulatory cells: their role in colorectal carcinoma progression and current clinical trials. Pharmacol Res 2022; 178:106197. [DOI: 10.1016/j.phrs.2022.106197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
|
5
|
Huppert LA, Green MD, Kim L, Chow C, Leyfman Y, Daud AI, Lee JC. Tissue-specific Tregs in cancer metastasis: opportunities for precision immunotherapy. Cell Mol Immunol 2022; 19:33-45. [PMID: 34417572 PMCID: PMC8752797 DOI: 10.1038/s41423-021-00742-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
Decades of advancements in immuno-oncology have enabled the development of current immunotherapies, which provide long-term treatment responses in certain metastatic cancer patients. However, cures remain infrequent, and most patients ultimately succumb to treatment-refractory metastatic disease. Recent insights suggest that tumors at certain organ sites exhibit distinctive response patterns to immunotherapy and can even reduce antitumor immunity within anatomically distant tumors, suggesting the activation of tissue-specific immune tolerogenic mechanisms in some cases of therapy resistance. Specialized immune cells known as regulatory T cells (Tregs) are present within all tissues in the body and coordinate the suppression of excessive immune activation to curb autoimmunity and maintain immune homeostasis. Despite the high volume of research on Tregs, the findings have failed to reconcile tissue-specific Treg functions in organs, such as tolerance, tissue repair, and regeneration, with their suppression of local and systemic tumor immunity in the context of immunotherapy resistance. To improve the understanding of how the tissue-specific functions of Tregs impact cancer immunotherapy, we review the specialized role of Tregs in clinically common and challenging organ sites of cancer metastasis, highlight research that describes Treg impacts on tissue-specific and systemic immune regulation in the context of immunotherapy, and summarize ongoing work reporting clinically feasible strategies that combine the specific targeting of Tregs with systemic cancer immunotherapy. Improved knowledge of Tregs in the framework of their tissue-specific biology and clinical sites of organ metastasis will enable more precise targeting of immunotherapy and have profound implications for treating patients with metastatic cancer.
Collapse
Affiliation(s)
- Laura A Huppert
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Michael D Green
- Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Luke Kim
- University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Christine Chow
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yan Leyfman
- Penn State College of Medicine, Hershey, PA, USA
| | - Adil I Daud
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - James C Lee
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
6
|
T Cell Aging in Patients with Colorectal Cancer-What Do We Know So Far? Cancers (Basel) 2021; 13:cancers13246227. [PMID: 34944847 PMCID: PMC8699226 DOI: 10.3390/cancers13246227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary This review describes the role of T cell aging in colorectal cancer development. T cells are important mediators in cancer immunity. Aging affects T cells, leading to various dysfunctions which can impede antitumor immunity. While some hallmarks of T cell aging have been observed in colorectal cancer patients, the functional role of such cells is not clear. Therefore, understanding how aged T cells influence overall patient outcome could potentially help in the pursue to develop new therapies for the elderly. Abstract Colorectal cancer (CRC) continues to be one of the most frequently diagnosed types of cancers in the world. CRC is considered to affect mostly elderly patients, and the number of diagnosed cases increases with age. Even though general screening improves outcomes, the overall survival and recurrence-free CRC rates in aged individuals are highly dependent on their history of comorbidities. Furthermore, aging is also known to alter the immune system, and especially the adaptive immune T cells. Many studies have emphasized the importance of T cell responses to CRC. Therefore, understanding how age-related changes affect the outcome in CRC patients is crucial. This review focuses on what is so far known about age-related T cell dysfunction in elderly patients with colorectal cancer and how aged T cells can mediate its development. Last, this study describes the advances in basic animal models that have potential to be used to elucidate the role of aged T cells in CRC.
Collapse
|
7
|
Hitchcock CL, Povoski SP, Mojzisik CM, Martin EW. Survival Advantage Following TAG-72 Antigen-Directed Cancer Surgery in Patients With Colorectal Carcinoma: Proposed Mechanisms of Action. Front Oncol 2021; 11:731350. [PMID: 34950576 PMCID: PMC8688248 DOI: 10.3389/fonc.2021.731350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/25/2021] [Indexed: 12/09/2022] Open
Abstract
Patients with colorectal carcinoma (CRC) continue to have variable clinical outcomes despite undergoing the same surgical procedure with curative intent and having the same pathologic and clinical stage. This problem suggests the need for better techniques to assess the extent of disease during surgery. We began to address this problem 35 years ago by injecting patients with either primary or recurrent CRC with 125I-labeled murine monoclonal antibodies against the tumor-associated glycoprotein-72 (TAG-72) and using a handheld gamma-detecting probe (HGDP) for intraoperative detection and removal of radioactive, i.e., TAG-72-positive, tissue. Data from these studies demonstrated a significant difference in overall survival data (p < 0.005 or better) when no TAG-72-positive tissue remained compared to when TAG-72-positive tissue remained at the completion of surgery. Recent publications indicate that aberrant glycosylation of mucins and their critical role in suppressing tumor-associated immune response help to explain the cellular mechanisms underlying our results. We propose that monoclonal antibodies to TAG-72 recognize and bind to antigenic epitopes on mucins that suppress the tumor-associated immune response in both the tumor and tumor-draining lymph nodes. Complete surgical removal of all TAG-72-positive tissue serves to reverse the escape phase of immunoediting, allowing a resetting of this response that leads to improved overall survival of the patients with either primary or recurrent CRC. Thus, the status of TAG-72 positivity after resection has a significant impact on patient survival.
Collapse
Affiliation(s)
- Charles L. Hitchcock
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Stephen P. Povoski
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Cathy M. Mojzisik
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Edward W. Martin
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
8
|
Hui Z, Zhang J, Zheng Y, Yang L, Yu W, An Y, Wei F, Ren X. Single-Cell Sequencing Reveals the Transcriptome and TCR Characteristics of pTregs and in vitro Expanded iTregs. Front Immunol 2021; 12:619932. [PMID: 33868236 PMCID: PMC8044526 DOI: 10.3389/fimmu.2021.619932] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/23/2021] [Indexed: 01/29/2023] Open
Abstract
Regulatory T cells (Tregs) play a critical role in the maintenance of immune tolerance and tumor evasion. However, the relative low proportion of these cells in peripheral blood and tissues has hindered many studies. We sought to establish a rapamycin-based in vitro Treg expansion procedure in patients diagnosed with colorectal cancer and perform single-cell sequencing to explore the characteristics of Treg cells. CD25+ cells enriched from peripheral blood mononuclear cells (PBMC) of colorectal tumor patients were cultured in X-VIVO15 medium, supplemented with 5% human AB serum, L-glutamine, rapamycin, interleukin-2 (IL-2), and Dynabeads human Treg expander for 21 days to expand Tregs. Treg cells with satisfactory phenotype and function were successfully expanded from CD4+CD25+ cells in patients with colorectal cancer. The median expansion fold was 75 (range, 20-105-fold), and >90.0% of the harvest cells were CD4+CD25+CD127dim/- cells. The ratio of CD4+CD25+Foxp3+ cells exceeded 60%. Functional assays showed that iTregs significantly inhibited CD8+T cell proliferation in vitro. Single-cell sequencing showed that the transcriptome of pTreg (CD4+CD25+CD127dim/- cells isolated from PBMC of colorectal cancer patients) and iTreg (CD4+CD25+CD127dim/- cells expanded in vitro according to the above regimen) cells were interlaced. pTregs exhibited enhanced suppressive function, whereas iTregs exhibited increased proliferative capacity. TCR repertoire analysis indicated minimal overlap between pTregs and iTregs. Pseudo-time trajectory analysis of Tregs revealed that pTregs were a continuum composed of three main branches: activated/effector, resting and proliferative Tregs. In contrast, in vitro expanded iTregs were a mixture of proliferating and activated/effector cells. The expression of trafficking receptors was also different in pTregs and iTregs. Various chemokine receptors were upregulated in pTregs. Activated effector pTregs overexpressed the chemokine receptor CCR10, which was not expressed in iTregs. The chemokine CCL28 was overexpressed in colorectal cancer and associated with poor prognosis. CCR10 interacted with CCL28 to mediate the recruitment of Treg into tumors and accelerated tumor progression. Depletion of CCR10+Treg cells from tumor microenvironment (TME) could be used as an effective treatment strategy for colorectal cancer patients. Our data distinguished the transcriptomic characteristics of different subsets of Treg cells and revealed the context-dependent functions of different populations of Treg cells, which was crucial to the development of alternative therapeutic strategies for Treg cells in autoimmune disease and cancer.
Collapse
Affiliation(s)
- Zhenzhen Hui
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jiali Zhang
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yu Zheng
- National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lili Yang
- National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenwen Yu
- National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yang An
- National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Feng Wei
- National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiubao Ren
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
9
|
Olguín JE, Medina-Andrade I, Rodríguez T, Rodríguez-Sosa M, Terrazas LI. Relevance of Regulatory T Cells during Colorectal Cancer Development. Cancers (Basel) 2020; 12:E1888. [PMID: 32674255 PMCID: PMC7409056 DOI: 10.3390/cancers12071888] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, there has been a significant increase in the study of own and foreign human factors favoring the development of different types of cancer, including genetic and environmental ones. However, the fact that the immune response plays a fundamental role in the development of immunity and susceptibility to colorectal cancer (CRC) is much stronger. Among the many cell populations of the immune system that participate in restricting or favoring CRC development, regulatory T cells (Treg) play a major role in orchestrating immunomodulation during CRC. In this review, we established concrete evidence supporting the fact that Treg cells have an important role in the promotion of tumor development during CRC, mediating an increasing suppressive capacity which controls the effector immune response, and generating protection for tumors. Furthermore, Treg cells go through a process called "phenotypic plasticity", where they co-express transcription factors that promote an inflammatory profile. We reunited evidence that describes the interaction between the different effector populations of the immune response and its modulation by Treg cells adapted to the tumor microenvironment, including the mechanisms used by Treg cells to suppress the protective immune response, as well as the different subpopulations of Treg cells participating in tumor progression, generating susceptibility during CRC development. Finally, we discussed whether Treg cells might or might not be a therapeutic target for an effective reduction in the morbidity and mortality caused by CRC.
Collapse
Affiliation(s)
- Jonadab E. Olguín
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México (UNAM), Av. De los Barrios # 1, Tlalnepantla 54090, Mexico; (J.E.O.); (I.M.-A.); (T.R.); (M.R.-S.)
- Unidad de Biomedicina, FES Iztacala, UNAM, Av. De los Barrios # 1, Tlalnepantla 54090, Mexico
| | - Itzel Medina-Andrade
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México (UNAM), Av. De los Barrios # 1, Tlalnepantla 54090, Mexico; (J.E.O.); (I.M.-A.); (T.R.); (M.R.-S.)
- Unidad de Biomedicina, FES Iztacala, UNAM, Av. De los Barrios # 1, Tlalnepantla 54090, Mexico
| | - Tonathiu Rodríguez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México (UNAM), Av. De los Barrios # 1, Tlalnepantla 54090, Mexico; (J.E.O.); (I.M.-A.); (T.R.); (M.R.-S.)
| | - Miriam Rodríguez-Sosa
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México (UNAM), Av. De los Barrios # 1, Tlalnepantla 54090, Mexico; (J.E.O.); (I.M.-A.); (T.R.); (M.R.-S.)
| | - Luis I. Terrazas
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México (UNAM), Av. De los Barrios # 1, Tlalnepantla 54090, Mexico; (J.E.O.); (I.M.-A.); (T.R.); (M.R.-S.)
- Unidad de Biomedicina, FES Iztacala, UNAM, Av. De los Barrios # 1, Tlalnepantla 54090, Mexico
| |
Collapse
|