1
|
Zeng A, Yin Y, Xu Z, Abuduwayiti A, Yang F, Shaik MS, Wang C, Chen K, Wang C, Fang X, Dai J. Down-regulated HHLA2 enhances neoadjuvant immunotherapy efficacy in patients with non-small cell lung cancer (NSCLC) with chronic obstructive pulmonary disease (COPD). BMC Cancer 2024; 24:396. [PMID: 38553708 PMCID: PMC10979619 DOI: 10.1186/s12885-024-12137-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/17/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Emerging data suggested a favorable outcome in advanced non-small cell lung cancer (NSCLC) with chronic obstructive pulmonary disease (COPD) patients treated by immunotherapy. The objective of this study was to investigate the effectiveness of neoadjuvant immunotherapy among NSCLC with COPD versus NSCLC without COPD and explore the potential mechanistic links. PATIENTS AND METHODS Patients with NSCLC receiving neoadjuvant immunotherapy and surgery at Shanghai Pulmonary Hospital between November 2020 and January 2023 were reviewed. The assessment of neoadjuvant immunotherapy's effectiveness was conducted based on the major pathologic response (MPR). The gene expression profile was investigated by RNA sequencing data. Immune cell proportions were examined using flow cytometry. The association between gene expression, immune cells, and pathologic response was validated by immunohistochemistry and single-cell data. RESULTS A total of 230 NSCLC patients who received neoadjuvant immunotherapy were analyzed, including 60 (26.1%) with COPD. Multivariate logistic regression demonstrated that COPD was a predictor for MPR after neoadjuvant immunotherapy [odds ratio (OR), 2.490; 95% confidence interval (CI), 1.295-4.912; P = 0.007]. NSCLC with COPD showed a down-regulation of HERV-H LTR-associating protein 2 (HHLA2), which was an immune checkpoint molecule, and the HHLA2low group demonstrated the enrichment of CD8+CD103+ tissue-resident memory T cells (TRM) compared to the HHLA2high group (11.9% vs. 4.2%, P = 0.013). Single-cell analysis revealed TRM enrichment in the MPR group. Similarly, NSCLC with COPD exhibited a higher proportion of CD8+CD103+TRM compared to NSCLC without COPD (11.9% vs. 4.6%, P = 0.040). CONCLUSIONS The study identified NSCLC with COPD as a favorable lung cancer type for neoadjuvant immunotherapy, offering a new perspective on the multimodality treatment of this patient population. Down-regulated HHLA2 in NSCLC with COPD might improve the MPR rate to neoadjuvant immunotherapy owing to the enrichment of CD8+CD103+TRM. TRIAL REGISTRATION Approval for the collection and utilization of clinical samples was granted by the Ethics Committee of Shanghai Pulmonary Hospital (Approval number: K23-228).
Collapse
Affiliation(s)
- Ao Zeng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Yanze Yin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Zhilong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Abudumijiti Abuduwayiti
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Fujun Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | | | - Chao Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Keyi Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Chao Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Xinyun Fang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Jie Dai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China.
| |
Collapse
|
2
|
Riondino S, Rosenfeld R, Formica V, Morelli C, Parisi G, Torino F, Mariotti S, Roselli M. Effectiveness of Immunotherapy in Non-Small Cell Lung Cancer Patients with a Diagnosis of COPD: Is This a Hidden Prognosticator for Survival and a Risk Factor for Immune-Related Adverse Events? Cancers (Basel) 2024; 16:1251. [PMID: 38610929 PMCID: PMC11011072 DOI: 10.3390/cancers16071251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The interplay between the immune system and chronic obstructive pulmonary disease (COPD) and non-small cell lung cancer (NSCLC) is complex and multifaceted. In COPD, chronic inflammation and oxidative stress can lead to immune dysfunction that can exacerbate lung damage, further worsening the respiratory symptoms. In NSCLC, immune cells can recognise and attack the cancer cells, which, however, can evade or suppress the immune response by various mechanisms, such as expressing immune checkpoint proteins or secreting immunosuppressive cytokines, thus creating an immunosuppressive tumour microenvironment that promotes cancer progression and metastasis. The interaction between COPD and NSCLC further complicates the immune response. In patients with both diseases, COPD can impair the immune response against cancer cells by reducing or suppressing the activity of immune cells, or altering their cytokine profile. Moreover, anti-cancer treatments can also affect the immune system and worsen COPD symptoms by causing lung inflammation and fibrosis. Immunotherapy itself can also cause immune-related adverse events that could worsen the respiratory symptoms in patients with COPD-compromised lungs. In the present review, we tried to understand the interplay between the two pathologies and how the efficacy of immunotherapy in NSCLC patients with COPD is affected in these patients.
Collapse
|
3
|
Dong W, Yin Y, Liu B, Jiang Y, Wang L, Shi D, Qin J. Efficacy and safety of pembrolizumab as first-line treatment for advanced non-small cell lung cancer complicated with chronic obstructive pulmonary disease: protocol for a prospective, single-arm, single-center, phase II clinical trial. Front Oncol 2024; 14:1179232. [PMID: 38515570 PMCID: PMC10955356 DOI: 10.3389/fonc.2024.1179232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Background The first-line standard treatment option for patients with NSCLC complicated with Chronic obstructive pulmonary disease (COPD) is still unclear and relies on the treatment option of NSCLC alone. To date, a limited number of retrospective studies have explored the efficacy and safety of immunotherapy in patients with NSCLC complicated with COPD. We therefore designed this study to further explore the efficacy and safety of first-line immunotherapy in patients with NSCLC complicated with COPD. Methods This study was designed as a single-armed, single-center, prospective, phase II clinical study. It will include 30 advanced (stage IV) NSCLC combined with COPD primary treatment subjects. Each subject's diagnosis will be confirmed by clinical, radiographic, pathologic, and pulmonary function evaluation. A fixed dose of 200 mg pembrolizumab will be administered by intravenous infusion on day1 every 3 weeks (Q3W). The management of stable and acute exacerbations of COPD include home oxygen therapy, and the use of conventional medications are also administered. Imaging evaluation will be performed every 6 weeks for 6 months from the first pembrolizumab dose and approximately every 12 weeks thereafter until disease progression or early withdrawal. COPD status will be evaluated every 3 months by pulmonary function, GOLD grading, mMRC score, CAT score, ABCD grouping, and AECOPD severity. The primary outcome is Progression-free survival. The secondary outcome measures include objective response rate, overall survival, rate of acute exacerbations of COPD (times/year), lung function, mMRC score, CAT score, impact of treatment on patient's health-related quality of life, antibiotic use (including duration and classes), and adverse events associated with immune checkpoint inhibitors. Exploratory endpoint is to explore the association between COPD grade and the degree of immune cell (CD4+ T lymphocytes and CD8+ T lymphocytes) infiltration, as well as the association between COPD grade and the efficacy of immune checkpoint inhibitors. Clinical trial registration ClinicalTrials.gov, identifier NCT05578222.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianwen Qin
- Department of Respiratory and Critica Care Medicine, Tianjin Chest Hospital, Affiliated Chest Hospital of Tianjin University, Tianjin, China
| |
Collapse
|
4
|
Stahlbaum D, Jablonski R, Strek ME, Bestvina CM, Polley MY, Reid P. Abnormalities on baseline chest imaging are risk factors for immune checkpoint inhibitor associated pneumonitis. Respir Med 2023; 217:107330. [PMID: 37385460 DOI: 10.1016/j.rmed.2023.107330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/25/2023] [Accepted: 06/11/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Chronic lung disease is a proposed risk factor for immune checkpoint inhibitor pneumonitis (ICI-pneumonitis); however, data is sparse regarding the impact of pre-existing lung disease and baseline chest imaging abnormalities on the risk of developing ICI-pneumonitis. METHODS We conducted a retrospective cohort study of patients with ICI treatment for cancer from 2015 to 2019. ICI-pneumonitis was determined by the treating physician with corroboration via an independent physician review and exclusion of alternative etiologies. Controls were patients treated with ICI without a diagnosis of ICI-pneumonitis. Fisher's exact tests, Student's t-tests, and logistic regression were used for statistical analysis. RESULTS We analyzed 45 cases of ICI-pneumonitis and 135 controls. Patients with abnormal baseline chest CT imaging (emphysema; bronchiectasis; reticular, ground glass and/or consolidative opacities) had increased risk for ICI-pneumonitis (OR 3.41, 95%CI: 1.68-6.87, p = 0.001). Patients with gastroesophageal reflux disease (GERD) (OR 3.83, 95%CI: 1.90-7.70, p = < 0.0001) also had increased risk for ICI-pneumonitis. On multivariable logistic regression, patients with abnormal baseline chest imaging and/or GERD remained at increased risk for ICI-pneumonitis. Eighteen percent of all patients (32/180) had abnormal baseline chest CT consistent with chronic lung disease without a documented diagnosis. CONCLUSION Patients with baseline chest CT abnormalities and GERD were at increased risk for developing ICI-pneumonitis. The large proportion of patients with baseline radiographic abnormalities without a clinical diagnosis of chronic lung disease highlights the importance of multidisciplinary evaluation prior to ICI initiation.
Collapse
Affiliation(s)
- Danielle Stahlbaum
- Section of Pulmonary and Critical Care, Department of Medicine, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA.
| | - Renea Jablonski
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, USA.
| | - Mary E Strek
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, USA.
| | - Christine M Bestvina
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA.
| | - Mei-Yin Polley
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA.
| | - Pankti Reid
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Zhang Q, Feng X, Hu W, Li C, Sun D, Peng Z, Wang S, Li H, Zhou M. Chronic obstructive pulmonary disease alters the genetic landscape and tumor immune microenvironment in lung cancer patients. Front Oncol 2023; 13:1169874. [PMID: 37388220 PMCID: PMC10301745 DOI: 10.3389/fonc.2023.1169874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) and lung cancer are leading causes of morbidity and mortality worldwide. Studies have reported molecular alterations in patients with lung cancer and in patients with COPD. However, few investigation has been conducted on the molecular characteristics of lung cancer patients with COPD. Materials and methods We performed a retrospective cohort study that included 435 patients with pathologically confirmed lung cancer at the Ruijin Hospital. For patients with documented spirometry, Global Initiative for Chronic Obstructive Lung Disease criteria were used to define COPD. For patients without documented spirometry, chest computed tomography and other clinical information were used to define COPD. Tumor tissue DNA was extracted from formalin-fixed paraffin-embedded samples. DNA mutation analysis, multiplex immunohistochemistry (mIHC), calculation of tumor mutational burden (TMB), mutant-allele tumor heterogeneity (MATH), and predication of neoantigens were performed. Results Although SNV mutations in lung cancer patients with COPD (G1 group) were generally higher than those in lung cancer patients without COPD (G2 group), the difference in the number of mutations was insignificant between the two groups. Of the 35 mutated genes, the number of them was higher in G1 than in G2, except that of EGFR. PI3K-Akt signaling pathway was enriched from significantly different genes. While TMB and MATH levels were not significantly different, the tumor neoantigen burdenwas markedly higher in G1 than that in G2. The level of CD68+ macrophages was significant higher in the stroma and total areas in the G1 group than in G2 group. The level of CD8+ lymphocytes was markedly higher in the stroma and showed a clear tendency forhigher expression in the G1 group than inthe G2 group. No significant differences were observed for the level of programmed death-ligand 1+ (PD-L1+), programmed death 1+ (PD-1+), and CD68PD-L1 in the stroma, tumor and total areas. Conclusion Our study revealed different genetic aberrations and pathways, higher neoantigen burden, and higher level of CD68+ macrophages and CD8+ T lymphocytes in lung cancer patients with COPD. Our investigation implies that the existence of COPD should be considered and immunotherapy is a potential choice when treating lung cancer patients with COPD.
Collapse
Affiliation(s)
- Qiurui Zhang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Xijia Feng
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiting Hu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Chengqiang Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Debin Sun
- Genecast Biotechnology Co., Ltd., Wuxi, Jiangsu, China
| | - Zhao Peng
- Genecast Biotechnology Co., Ltd., Wuxi, Jiangsu, China
| | | | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhou
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| |
Collapse
|
6
|
Lin M, Huang Z, Chen Y, Xiao H, Wang T. Lung cancer patients with chronic obstructive pulmonary disease benefit from anti-PD-1/PD-L1 therapy. Front Immunol 2022; 13:1038715. [PMID: 36532019 PMCID: PMC9751394 DOI: 10.3389/fimmu.2022.1038715] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are two of the most fatal respiratory diseases, seriously threatening human health and imposing a heavy burden on families and society. Although COPD is a significant independent risk factor for LC, it is still unclear how COPD affects the prognosis of LC patients, especially when LC patients with COPD receive immunotherapy. With the development of immune checkpoint inhibition (ICI) therapy, an increasing number of inhibitors of programmed cell death-1 (PD-1) and PD-1 ligand (PD-L1) have been applied to the treatment of LC. Recent studies suggest that LC patients with COPD may benefit more from immunotherapy. In this review, we systematically summarized the outcomes of LC patients with COPD after anti-PD-1/PD-L1 treatment and discussed the tumor immune microenvironment (TIME) regulated by COPD in LC immunotherapy, which provides novel insights for the clinical treatment of LC patients with COPD.
Collapse
Affiliation(s)
- Mao Lin
- Department of Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zongyao Huang
- Department of Pathology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yingfu Chen
- Department of Pharmacy, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Hongtao Xiao
- Department of Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ting Wang
- Department of Clinical Research, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China,*Correspondence: Ting Wang,
| |
Collapse
|
7
|
Noda Y, Shiroyama T, Masuhiro K, Amiya S, Enomoto T, Adachi Y, Hara R, Niitsu T, Naito Y, Miyake K, Koyama S, Hirata H, Nagatomo I, Takeda Y, Kumanogoh A. Quantitative evaluation of emphysema for predicting immunotherapy response in patients with advanced non-small-cell lung cancer. Sci Rep 2022; 12:8881. [PMID: 35614345 PMCID: PMC9133115 DOI: 10.1038/s41598-022-13131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/17/2022] [Indexed: 11/26/2022] Open
Abstract
The efficacy of immune checkpoint inhibitors (ICIs) in patients with advanced non-small-cell lung cancer (NSCLC) might depend on the presence of emphysema, but this association is not established. We aimed to investigate if quantitively and automatically measuring emphysema can predict the effect of ICIs. We retrospectively analyzed 56 patients with NSCLC who underwent immunotherapy at our hospital. We used the Goddard scoring system (GS) to evaluate the severity of emphysema on baseline CT scans using three-dimensional image analysis software. The emphysema group (GS ≥ 1) showed better progression-free survival (PFS) than the non-emphysema group (GS = 0) (6.5 vs. 2.3 months, respectively, p < 0.01). Multivariate analyses revealed that good performance status, GS of ≥ 1, and high expression of PD-L1 were independently associated with better PFS, while smoking status was not. In conclusion, quantitative evaluation of emphysema can be an objective parameter for predicting the therapeutic effects of ICIs in patients with NSCLC. Our findings can be used to generate hypotheses for future studies.
Collapse
Affiliation(s)
- Yoshimi Noda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Takayuki Shiroyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan.
| | - Kentaro Masuhiro
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Saori Amiya
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Takatoshi Enomoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Yuichi Adachi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Reina Hara
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Takayuki Niitsu
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Kotaro Miyake
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan.,Department of Immunopathology, WPI, Immunology Frontier Research Center (iFReC), Osaka University, Suita, Osaka, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.,Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
8
|
Feng Z, Yin Y, Liu B, Wang L, Chen M, Zhu Y, Zhang H, Sun D, Qin J. ZNF143 Expression is Associated with COPD and Tumor Microenvironment in Non-Small Cell Lung Cancer. Int J Chron Obstruct Pulmon Dis 2022; 17:685-700. [PMID: 35400998 PMCID: PMC8986213 DOI: 10.2147/copd.s352392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is an inflammatory-related disease highly associated with increased lung cancer risk. Studies have explored the tumor promoting roles for zinc finger protein 143 (ZNF143). However, the role of ZNF143 in COPD and tumor microenvironment of non-small cell lung cancer (NSCLC) has not been fully elucidated. Methods COPD-related key genes were identified by differential gene expression evaluation, WGCNA and SVM-RFE analysis using mRNA expression data retrieved from public databases. ROC analysis was conducted to evaluate the diagnostic value of ZNF143. Correlation between ZNF143 and clinic-pathological features, associations with tumor-infiltrating immune cells (TICs) and the relationship with predictors of immunotherapy efficacy were explored. ZNF143 gene expression was validated by qRT-PCR using an independent cohort. Results Bioinformatic and machine learning analysis showed that ZNF143 was a COPD-related gene. ZNF143 expression was significantly upregulated in COPD and is a potential diagnostic biomarker in COPD with AUC > 0.85. ZNF143 expression was significantly upregulated in lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD). ZNF143 expression levels were significantly higher in LUAD patients with COPD relative to the levels in patients only with LUAD. Upregulation of ZNF143 in patients with comorbidity of NSCLC and COPD was further confirmed by qRT-PCR analysis. High expression of ZNF143 was significantly correlated with advanced TNM stage in LUSC. High ZNF143 expression was associated with activated TICs in both LUAD and LUSC samples. Moreover, ZNF143 expression was significantly correlated with the levels of several known predictors of immunotherapy efficacy, including PD-L1, PD-L2, TMB and TIDE in NSCLC. Conclusion ZNF143 is a novel COPD biomarker. High expression level of ZNF143 is associated with immune microenvironment and high risk of progression of COPD to NSCLC.
Collapse
Affiliation(s)
- Zhenxing Feng
- Department of Radiology, Tianjin Chest Hospital, Tianjin, 300222, People’s Republic of China
| | - Yan Yin
- Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, 300222, People’s Republic of China
| | - Bin Liu
- Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, 300222, People’s Republic of China
| | - Lei Wang
- Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, 300222, People’s Republic of China
| | - Miaomiao Chen
- Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, 300222, People’s Republic of China
| | - Yue Zhu
- Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, 300222, People’s Republic of China
| | - Hong Zhang
- Department of Radiology, Tianjin Chest Hospital, Tianjin, 300222, People’s Republic of China
| | - Daqiang Sun
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, 300222, People’s Republic of China
- Daqiang Sun, Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, 300222, People’s Republic of China, Email
| | - Jianwen Qin
- Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, 300222, People’s Republic of China
- Correspondence: Jianwen Qin, Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, 300222, People’s Republic of China, Email
| |
Collapse
|