1
|
Lin YC, Ku CC, Wuputra K, Wu DC, Yokoyama KK. Vulnerability of Antioxidant Drug Therapies on Targeting the Nrf2-Trp53-Jdp2 Axis in Controlling Tumorigenesis. Cells 2024; 13:1648. [PMID: 39404411 PMCID: PMC11475825 DOI: 10.3390/cells13191648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Control of oxidation/antioxidation homeostasis is important for cellular protective functions, and disruption of the antioxidation balance by exogenous and endogenous ligands can lead to profound pathological consequences of cancerous commitment within cells. Although cancers are sensitive to antioxidation drugs, these drugs are sometimes associated with problems including tumor resistance or dose-limiting toxicity in host animals and patients. These problems are often caused by the imbalance between the levels of oxidative stress-induced reactive oxygen species (ROS) and the redox efficacy of antioxidants. Increased ROS levels, because of abnormal function, including metabolic abnormality and signaling aberrations, can promote tumorigenesis and the progression of malignancy, which are generated by genome mutations and activation of proto-oncogene signaling. This hypothesis is supported by various experiments showing that the balance of oxidative stress and redox control is important for cancer therapy. Although many antioxidant drugs exhibit therapeutic potential, there is a heterogeneity of antioxidation functions, including cell growth, cell survival, invasion abilities, and tumor formation, as well as the expression of marker genes including tumor suppressor proteins, cell cycle regulators, nuclear factor erythroid 2-related factor 2, and Jun dimerization protein 2; their effectiveness in cancer remains unproven. Here, we summarize the rationale for the use of antioxidative drugs in preclinical and clinical antioxidant therapy of cancer, and recent advances in this area using cancer cells and their organoids, including the targeting of ROS homeostasis.
Collapse
Affiliation(s)
- Ying-Chu Lin
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kazunari K. Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
2
|
Gök G, Küçük T, Cimen S, Gök A, Göktuğ G, Erel Ö, İmamoğlu MA. The Effect of Glutathione on Development and Prognosis in Non-Muscle-Invasive Bladder Cancer. J Clin Med 2024; 13:5483. [PMID: 39336970 PMCID: PMC11432633 DOI: 10.3390/jcm13185483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/07/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Glutathione, along with its related enzymes, constitutes a key antioxidant defense mechanism against oxidative stress and cancer formation in the body. Among urological malignancies, bladder cancer ranks second following prostate cancer. Oxidative stress has significant involvement in the development and prognosis of bladder cancer. This investigation aimed to examine the impact of glutathione on prognosis in patients with non-muscle-invasive bladder cancer. Methods: This study included 98 patients with high grade non-muscle-invasive bladder cancer who had undergone intravesical Bacillus Calmette-Guérin therapy and 30 healthy controls with no history of uroepithelial carcinoma of the bladder. The patients with bladder cancer were evaluated in three subgroups. Group 1 consisted of 41 patients who did not experience recurrence during follow-up, Group 2 included 28 patients who had recurrent tumors, and Group 3 consisted of 29 patients who progressed to muscle-invasive stages. Blood samples were collected from all participants. Blood levels of reduced, oxidized, and total glutathione were measured spectrophotometrically. Results: Reduced glutathione levels significantly differed among the groups (p < 0.001), attributed to the control group exhibiting higher reduced glutathione levels compared with Groups 1, 2, and 3 (p < 0.001). There were no significant differences in reduced glutathione levels between Groups 1 and 2, Groups 1 and 3, or Groups 2 and 3 (p > 0.05). Total glutathione levels varied significantly among the groups (p < 0.001), with the control group having higher levels than Groups 1, 2, and 3 (p < 0.001). No significant differences were detected between any of the paired patient groups in terms of total glutathione levels (p > 0.05). Regarding oxidized glutathione levels, the difference was statistically significant (p < 0.001), with the control group showing lower levels than the remaining three groups (p < 0.001). Paired comparisons revealed no significant differences in oxidized glutathione levels (p > 0.05). Conclusions: This study revealed that glutathione had an effect on the emergence of bladder cancer but did not affect its prognosis. Nevertheless, we recommend that future studies with larger bladder cancer patient cohorts should be conducted to comprehensively determine the impact of glutathione on the prognosis of this cancer.
Collapse
Affiliation(s)
- Gamze Gök
- Department of Biochemistry, Ankara Bilkent City Hospital, Ankara 06800, Turkey; (G.G.); (Ö.E.)
| | - Tarık Küçük
- Department of Urology, Diskapi Yildirim Beyazit Training and Research Hospital, Faculty of Medicine, University of Health Sciences, Ankara 06110, Turkey; (T.K.); (S.C.); (G.G.); (M.A.İ.)
- Department of Urology, Etlik City Hospital, Ankara 06010, Turkey
| | - Sertac Cimen
- Department of Urology, Diskapi Yildirim Beyazit Training and Research Hospital, Faculty of Medicine, University of Health Sciences, Ankara 06110, Turkey; (T.K.); (S.C.); (G.G.); (M.A.İ.)
- Department of Urology, Etlik City Hospital, Ankara 06010, Turkey
| | - Alper Gök
- Department of Urology, Diskapi Yildirim Beyazit Training and Research Hospital, Faculty of Medicine, University of Health Sciences, Ankara 06110, Turkey; (T.K.); (S.C.); (G.G.); (M.A.İ.)
- Department of Urology, Etlik City Hospital, Ankara 06010, Turkey
| | - Göksel Göktuğ
- Department of Urology, Diskapi Yildirim Beyazit Training and Research Hospital, Faculty of Medicine, University of Health Sciences, Ankara 06110, Turkey; (T.K.); (S.C.); (G.G.); (M.A.İ.)
- Department of Urology, Etlik City Hospital, Ankara 06010, Turkey
| | - Özcan Erel
- Department of Biochemistry, Ankara Bilkent City Hospital, Ankara 06800, Turkey; (G.G.); (Ö.E.)
| | - Muhammet Abdurrahim İmamoğlu
- Department of Urology, Diskapi Yildirim Beyazit Training and Research Hospital, Faculty of Medicine, University of Health Sciences, Ankara 06110, Turkey; (T.K.); (S.C.); (G.G.); (M.A.İ.)
- Department of Urology, Etlik City Hospital, Ankara 06010, Turkey
| |
Collapse
|
3
|
Li W, Yao R, Yu N, Zhang W. Identification of a prognostic signature based on five ferroptosis-related genes for diffuse large B-cell lymphoma. Cancer Biomark 2024; 40:125-139. [PMID: 38517778 PMCID: PMC11191449 DOI: 10.3233/cbm-230325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/05/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Therapies for diffuse large B-cell lymphoma (DLBCL) are limited due to the diverse gene expression profiles and complicated immune microenvironments, making it an aggressive lymphoma. Beyond this, researches have shown that ferroptosis contributes to tumorigenesis, progression, and metastasis. We thus are interested to dissect the connection between ferroptosis and disease status of DLBCL. We aim at generating a valuable prognosis gene signature for predicting the status of patients of DLBCL, with focus on ferroptosis-related genes (FRGs). OBJECTIVE To examine the connection between ferroptosis-related genes (FRGs) and clinical outcomes in DLBCL patients based on public datasets. METHODS An expression profile dataset for DLBCL was downloaded from GSE32918 (https://www.ncbi.nlm.nih.gov/geo/ query/acc.cgi?acc=gse32918), and a ferroptosis-related gene cluster was obtained from the FerrDb database (http://www. zhounan.org/ferrdb/). A prognostic signature was developed from this gene cluster by applying a least absolute shrinkage and selection operator (LASSO) Cox regression analysis to GSE32918, followed by external validation. Its effectiveness as a biomarker and the prognostic value was determined by a receiver operator characteristic curve mono factor analysis. Finally, functional enrichment was evaluated by the package Cluster Profiler of R. RESULTS Five ferroptosis-related genes (FRGs) (GOP1, GPX2, SLC7A5, ATF4, and CXCL2) associated with DLBCL were obtained by a multivariate analysis. The prognostic power of these five FRGs was verified by TCGA (https://xenabrowser.net/datapages/?dataset=TCGA.DLBC.sampleMap%2FHiSeqV2_PANCAN&host=https%3A%2F%2Ftcga.xenahubs.net&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A44) and GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse 32918) datasets, with ROC analyses. KEGG and GO analyses revealed that upregulated genes in the high-risk group based on the gene signature were enriched in receptor interactions and other cancer-related pathways, including pathways related to abnormal metabolism and cell differentiation. CONCLUSION The newly developed signature involving GOP1, GPX2, SLC7A5, ATF4, and CXCL2 has the potential to serve as a prognostic biomarker. Furthermore, our results provide additional support for the contribution of ferroptosis to DLBCL.
Collapse
Affiliation(s)
- Wuping Li
- Departments of Lymphatic and Hematological Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Ruizhe Yao
- Queen Mary College of Nanchang University, Nanchang, Jiangxi, China
| | - Nasha Yu
- Departments of Lymphatic and Hematological Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Weiming Zhang
- Departments of Lymphatic and Hematological Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Yang M, Zhu X, Shen Y, He Q, Qin Y, Shao Y, Yuan L, Ye H. GPX2 predicts recurrence-free survival and triggers the Wnt/β-catenin/EMT pathway in prostate cancer. PeerJ 2022; 10:e14263. [PMID: 36312753 PMCID: PMC9615941 DOI: 10.7717/peerj.14263] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023] Open
Abstract
Objective This study aimed to establish a prognostic model related to prostate cancer (PCa) recurrence-free survival (RFS) and identify biomarkers. Methods The RFS prognostic model and key genes associated with PCa were established using Least Absolute Shrinkage and Selection Operator (LASSO) and Cox regression from the Cancer Genome Atlas (TCGA)-PRAD and the Gene Expression Omnibus (GEO) GSE46602 datasets. The weighted gene co-expression network (WGCNA) was used to analyze the obtained key modules and genes, and gene set enrichment analysis (GSEA) was performed. The phenotype and mechanism were verified in vitro. Results A total of 18 genes were obtained by LASSO regression, and an RFS model was established and verified (TCGA, AUC: 0.774; GSE70768, AUC: 0.759). Three key genes were obtained using multivariate Cox regression. WGCNA analysis obtained the blue module closely related to the Gleason score (cor = -0.22, P = 3.3e - 05) and the unique gene glutathione peroxidase 2 (GPX2). Immunohistochemical analysis showed that the expression of GPX2 was significantly higher in patients with PCa than in patients with benign prostatic hyperplasia (P < 0.05), but there was no significant correlation with the Gleason score (GSE46602 and GSE6919 verified), which was also verified in the GSE46602 and GSE6919 datasets. The GSEA results showed that GPX2 expression was mainly related to the epithelial-mesenchymal transition (EMT) and Wnt pathways. Additionally, GPX2 expression significantly correlated with eight kinds of immune cells. In human PCa cell lines LNCaP and 22RV1, si-GPX2 inhibited proliferation and invasion, and induced apoptosis when compared with si-NC. The protein expression of Wnt3a, glycogen synthase kinase 3β (GSK3β), phosphorylated (p)-GSK3β, β-catenin, p-β-catenin, c-myc, cyclin D1, and vimentin decreased; the expression of E-cadherin increased; and the results for over-GPX2 were opposite to those for over-NC. The protein expression of GPX2 decreased, and β-catenin was unchanged in the si-GPX2+ SKL2001 group compared with the si-NC group. Conclusion We successfully constructed the PCa RFS prognostic model, obtained RFS-related biomarker GPX2, and found that GPX2 regulated PCa progression and triggered Wnt/β-catenin/EMT pathway molecular changes.
Collapse
Affiliation(s)
- Ming Yang
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xudong Zhu
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Shen
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi He
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Qin
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiqun Shao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Yuan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hesong Ye
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Selistre-de-Araujo HS, Pachane BC, Altei WF. Tumor heterogeneity and the dilemma of antioxidant therapies in cancer. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1074. [PMID: 36330399 PMCID: PMC9622474 DOI: 10.21037/atm-22-4219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 08/30/2023]
Affiliation(s)
- Heloisa Sobreiro Selistre-de-Araujo
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Bianca Cruz Pachane
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Wanessa Fernanda Altei
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Radiation Oncology Department, Barretos Cancer Hospital, Barretos, Brazil
| |
Collapse
|