1
|
Shasteen ME, Wurzelmann MK, McGregor AJ, Raukar NP. Heart Breaking Differences: A Narrative Review of Sex and Gender Disparities in Sports-Related Sudden Cardiac Death. Clin Ther 2024; 46:982-987. [PMID: 39613695 DOI: 10.1016/j.clinthera.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 12/01/2024]
Abstract
PURPOSE Sports-related sudden cardiac death (srSCD) represents a rare yet significant occurrence. This review aims to explore the epidemiology, etiology, and prevention of srSCD, with a particular focus on the influence of sex and gender. It seeks to analyze existing literature to elucidate the impact of biological variables, societal factors, and preventive measures in understanding and addressing srSCD among athletes. METHODS A narrative review approach was utilized to synthesize relevant literature on srSCD, using a validated PubMed Search tool for sex and gender-related factors. The review focused on primary data investigating sex differences that may contribute to srSCD, as well as pertinent review articles. FINDINGS The review highlights the complexity of defining and studying srSCD, with challenges stemming from varied reporting methods and lack of standardized definitions. Disparities in incidence rates between male and female athletes are evident, with males exhibiting a disproportionately higher risk. Biological factors, including cardiac adaptations to exercise and sex hormone influences, contribute to these sex-specific differences in srSCD rates. While screening programs, particularly utilizing electrocardiograms, show promise in identifying at-risk individuals, debates persist regarding their implementation and efficacy. Furthermore, legislative gaps in mandating the availability of automatic external defibrillators (AEDs) in public settings underscore the need for unified advocacy efforts to improve access to life-saving interventions. IMPLICATIONS Understanding the multifaceted nature of srSCD, including its biological underpinnings and societal implications, is crucial for developing effective preventive strategies. Sex-specific screening programs tailored to the unique risk profiles of male and female athletes, as well as legislative initiatives promoting AED placement and cardiopulmonary resuscitation training, are essential components of comprehensive srSCD prevention efforts. By addressing disparities and implementing evidence-based interventions, this paper advocates for a holistic approach to mitigate the risk of srSCD and enhance the safety and well-being of athletes across all levels of competition.
Collapse
Affiliation(s)
- Mallory E Shasteen
- Department of Emergency Medicine, University of South Carolina School of Medicine Greenville, Prisma Health-Upstate.
| | - Mary K Wurzelmann
- Department of Emergency Medicine, University of South Carolina School of Medicine Greenville, Prisma Health-Upstate
| | - Alyson J McGregor
- Department of Emergency Medicine, University of South Carolina School of Medicine Greenville, Prisma Health-Upstate
| | - Neha P Raukar
- Department of Emergency Medicine, Mayo Clinic College of Medicine
| |
Collapse
|
2
|
Tao M, Dhaliwal S, Ghosalkar D, Sheng S, Dianati-Maleki N, Tam E, Rahman T, Mann N, Kort S. Utility of native T1 mapping and myocardial extracellular volume fraction in patients with nonischemic dilated cardiomyopathy: A systematic review and meta-analysis. IJC HEART & VASCULATURE 2024; 51:101339. [PMID: 38371310 PMCID: PMC10873728 DOI: 10.1016/j.ijcha.2024.101339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 02/20/2024]
Abstract
Background Cardiac magnetic resonance imaging (CMR) based T1 mapping and extracellular volume fraction (ECV) are powerful tools for identifying myocardial fibrosis. This systematic review and meta-analysis aims to characterize the utility of native T1 mapping and ECV in patients with non-ischemic cardiomyopathy (NICM) and to clarify the prognostic significance of elevated values. Methods A literature search was conducted for studies reporting on use of CMR-based native T1 mapping and ECV measurement in NICM patients and their association with major adverse cardiac events (MACE), ventricular arrhythmias (VAs), and left ventricular reverse remodeling (LVRR). Databases searched included: Ovid MEDLINE, EMBASE, Web of Science, and Google Scholar. The search was not restricted to time or publication status. Results Native T1 and ECV were significantly higher in NICM patients compared to controls (MD 78.80, 95 % CI 50.00, 107.59; p < 0.01; MD 5.86, 95 % CI 4.55, 7.16; p < 0.01). NICM patients who experienced MACE had higher native T1 and ECV (MD 52.87, 95 % CI 26.59, 79.15; p < 0.01; MD 6.03, 95 % CI 3.79, 8.26; p < 0.01). There was a non-statistically significant trend toward higher native T1 time in NICM patients who experienced VAs. NICM patients who were poor treatment responders had higher baseline native T1 and ECV (MD 40.58, 95 % CI 12.90, 68.25; p < 0.01; MD 3.29, 95 % CI 2.25, 4.33; p < 0.01). Conclusions CMR-based native T1 and ECV quantification may be useful tools for risk stratification of patients with NICM. They may provide additional diagnostic utility in combination with LGE, which poorly characterizes fibrosis in patients with diffuse myocardial involvement.
Collapse
Affiliation(s)
- Michael Tao
- Department of Medicine, Division of Cardiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Simrat Dhaliwal
- Department of Medicine, Division of Cardiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Dhairyasheel Ghosalkar
- Department of Medicine, Division of Cardiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Siyuan Sheng
- Department of Medicine, Division of Cardiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Neda Dianati-Maleki
- Department of Medicine, Division of Cardiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Edlira Tam
- Department of Medicine, Division of Cardiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Tahmid Rahman
- Department of Medicine, Division of Cardiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Noelle Mann
- Department of Medicine, Division of Cardiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Smadar Kort
- Department of Medicine, Division of Cardiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| |
Collapse
|
3
|
Hegemann N, Barth L, Döring Y, Voigt N, Grune J. Implications for neutrophils in cardiac arrhythmias. Am J Physiol Heart Circ Physiol 2024; 326:H441-H458. [PMID: 38099844 PMCID: PMC11219058 DOI: 10.1152/ajpheart.00590.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
Cardiac arrhythmias commonly occur as a result of aberrant electrical impulse formation or conduction in the myocardium. Frequently discussed triggers include underlying heart diseases such as myocardial ischemia, electrolyte imbalances, or genetic anomalies of ion channels involved in the tightly regulated cardiac action potential. Recently, the role of innate immune cells in the onset of arrhythmic events has been highlighted in numerous studies, correlating leukocyte expansion in the myocardium to increased arrhythmic burden. Here, we aim to call attention to the role of neutrophils in the pathogenesis of cardiac arrhythmias and their expansion during myocardial ischemia and infectious disease manifestation. In addition, we will elucidate molecular mechanisms associated with neutrophil activation and discuss their involvement as direct mediators of arrhythmogenicity.
Collapse
Affiliation(s)
- Niklas Hegemann
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Lukas Barth
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Yannic Döring
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Jana Grune
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| |
Collapse
|
4
|
Narayanan G, Halim A, Hu A, Avin KG, Lu T, Zehnder D, Hato T, Chen NX, Moe SM, Lim K. Molecular Phenotyping and Mechanisms of Myocardial Fibrosis in Advanced Chronic Kidney Disease. KIDNEY360 2023; 4:1562-1579. [PMID: 37858297 PMCID: PMC10695648 DOI: 10.34067/kid.0000000000000276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Key Points Myocardial fibrosis in hearts from patients with CKD is characterized by increased trimeric tensile collagen type I and decreased elastic collagen type III compared with hearts from hypertensive or healthy donors, suggesting a unique fibrotic phenotype. Myocardial fibrosis in CKD is driven by alterations in extracellular matrix proteostasis, including dysregulation of metalloproteinases and cross-linking enzymes. CKD-associated mineral stressors uniquely induce a fibronectin-independent mechanism of fibrillogenesis characterized by formation of trimeric collagen compared with proinflammatory/fibrotic cytokines. Background Myocardial fibrosis is a major life-limiting problem in CKD. Despite this, the molecular phenotype and metabolism of collagen fibrillogenesis in fibrotic hearts of patients with advanced CKD have been largely unstudied. Methods We analyzed explanted human left ventricular (LV) heart tissues in a three-arm cross-sectional cohort study of deceased donor patients on hemodialysis (HD, n =18), hypertension with preserved renal function (HTN, n =8), and healthy controls (CON, n =17), ex vivo . RNA-seq and protein analysis was performed on human donor hearts and cardiac fibroblasts treated with mineral stressors (high phosphate and high calcium). Further mechanistic studies were performed using primary cardiac fibroblasts, in vitro treated with mineral stressors, proinflammatory and profibrotic cytokines. Results Of the 43 donor participants, there was no difference in age (P > 0.2), sex (P > 0.8), or body mass index (P > 0.1) between the groups. Hearts from the HD group had extensive fibrosis (P < 0.01). All LV tissues expressed only the trimeric form of collagen type I. HD hearts expressed increased collagen type I (P < 0.03), elevated collagen type I:III ratio (P < 0.05), and decreased MMP1 (P < 0.05) and MMP2 (P < 0.05). RNA-seq revealed no significant differential gene expression of extracellular matrix proteins of interest in HD hearts, but there was significant upregulation of LH2, periostin, α -SMA, and TGF-β 1 gene expression in mineral stressor–treated cardiac fibroblasts. Both mineral stressors (P < 0.009) and cytokines (P < 0.03) increased collagen type I:III ratio. Mineral stressors induced trimeric collagen type I, but cytokine treatment induced only dimeric collagen type I in cardiac fibroblasts. Mineral stressors downregulated fibronectin (P < 0.03) and MMP2 zymogen (P < 0.01) but did not significantly affect expression of periostin, MMP1, or cross-linking enzymes. TGF-β upregulated fibronectin (P < 0.01) and periostin (P < 0.02) only. Conclusions Myocardial fibrosis in advanced CKD hearts is characterized by increased trimeric collagen type I and dysregulated collagen metabolism, and is differentially regulated by components of uremia.
Collapse
Affiliation(s)
- Gayatri Narayanan
- Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, Indiana
| | - Arvin Halim
- Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alvin Hu
- Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Medicine, Indiana University Health Ball Memorial Hospital, Indianapolis, Indiana
| | - Keith G. Avin
- Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Physical Therapy, Indiana University School of Health and Human Sciences, Indiana University, Indianapolis, Indiana
| | - Tzongshi Lu
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel Zehnder
- Department of Nephrology and Department of Acute Medicine, North Cumbria University Hospital NHS Trust, Carlisle, United Kingdom
| | - Takashi Hato
- Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, Indiana
| | - Neal X. Chen
- Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sharon M. Moe
- Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kenneth Lim
- Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
5
|
Zoico E, Giani A, Saatchi T, Rizzatti V, Mazzali G, Fantin F, Benfari G, Onorati F, Urbani S, Zamboni M. Myocardial Fibrosis and Steatosis in Patients with Aortic Stenosis: Roles of Myostatin and Ceramides. Int J Mol Sci 2023; 24:15508. [PMID: 37958492 PMCID: PMC10648018 DOI: 10.3390/ijms242115508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Aortic stenosis (AS) involves progressive valve obstruction and a remodeling response of the left ventriculum (LV) with systolic and diastolic dysfunction. The roles of interstitial fibrosis and myocardial steatosis in LV dysfunction in AS have not been completely characterized. We enrolled 31 patients (19 women and 12 men) with severe AS undergoing elective aortic valve replacement. The subjects were clinically evaluated, and transthoracic echocardiography was performed pre-surgery. LV septal biopsies were obtained to assess fibrosis and apoptosis and fat deposition in myocytes (perilipin 5 (PLIN5)), or in the form of adipocytes within the heart (perilipin 1 (PLIN1)), the presence of ceramides and myostatin were assessed via immunohistochemistry. After BMI adjustment, we found a positive association between fibrosis and apoptotic cardiomyocytes, as well as fibrosis and the area covered by PLIN5. Apoptosis and PLIN5 were also significantly interrelated. LV fibrosis increased with a higher medium gradient (MG) and peak gradient (PG). Ceramides and myostatin levels were higher in patients within the higher MG and PG tertiles. In the linear regression analysis, increased fibrosis correlated with increased apoptosis and myostatin, independent from confounding factors. After adjustment for age and BMI, we found a positive relationship between PLIN5 and E/A and a negative correlation between septal S', global longitudinal strain (GLS), and fibrosis. Myostatin was inversely correlated with GLS and ejection fraction. Fibrosis and myocardial steatosis altogether contribute to ventricular dysfunction in severe AS. The association of myostatin and fibrosis with systolic dysfunction, as well as between myocardial steatosis and diastolic dysfunction, highlights potential therapeutic targets.
Collapse
Affiliation(s)
- Elena Zoico
- Division of Geriatric Medicine, Department of Medicine, University of Verona, 37126 Verona, Italy; (A.G.)
| | - Anna Giani
- Division of Geriatric Medicine, Department of Medicine, University of Verona, 37126 Verona, Italy; (A.G.)
| | - Tanaz Saatchi
- Division of Geriatric Medicine, Department of Medicine, University of Verona, 37126 Verona, Italy; (A.G.)
| | - Vanni Rizzatti
- Division of Geriatric Medicine, Department of Medicine, University of Verona, 37126 Verona, Italy; (A.G.)
| | - Gloria Mazzali
- Division of Geriatric Medicine, Department of Medicine, University of Verona, 37126 Verona, Italy; (A.G.)
| | - Francesco Fantin
- Division of Geriatric Medicine, Department of Medicine, University of Verona, 37126 Verona, Italy; (A.G.)
| | - Giovanni Benfari
- Division of Cardiology, Department of Medicine, University of Verona, 37126 Verona, Italy
| | - Francesco Onorati
- Division of Cardiac Surgery, Department of Surgery, Dentistry, Pediatric and Gynecology, University of Verona, 37126 Verona, Italy
| | - Silvia Urbani
- Division of Geriatric Medicine, Department of Medicine, University of Verona, 37126 Verona, Italy; (A.G.)
| | - Mauro Zamboni
- Division of Geriatric Medicine, Department of Surgery, Dentistry, Pediatric and Gynecology, University of Verona, 37126 Verona, Italy
| |
Collapse
|
6
|
Manole S, Budurea C, Pop S, Iliescu AM, Ciortea CA, Iancu SD, Popa L, Coman M, Szabó L, Coman V, Bálint Z. Correlation between Volumes Determined by Echocardiography and Cardiac MRI in Controls and Atrial Fibrillation Patients. Life (Basel) 2021; 11:life11121362. [PMID: 34947893 PMCID: PMC8707690 DOI: 10.3390/life11121362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 11/21/2022] Open
Abstract
Aims: We aimed to compare cardiac volumes measured with echocardiography (echo) and cardiac magnetic resonance imaging (MRI) in a mixed cohort of healthy controls (controls) and patients with atrial fibrillation (AF). Materials and methods: In total, 123 subjects were included in our study; 99 full datasets were analyzed. All the participants underwent clinical evaluation, EKG, echo, and cardiac MRI acquisition. Participants with full clinical data were grouped into 63 AF patients and 36 controls for calculation of left atrial volume (LA Vol) and 51 AF patients and 30 controls for calculation of left ventricular end-diastolic volume (LV EDV), end-systolic volume (ESV), and LV ejection fraction (LV EF). Results: No significant differences in LA Vol were observed (p > 0.05) when measured by either echo or MRI. However, echo provided significantly lower values for left ventricular volume (p < 0.0001). The echo LA Vol of all the subjects correlated well with that measured by MRI (Spearmen correlation coefficient r = 0.83, p < 0.0001). When comparing the two methods, significant positive correlations of EDV (all subjects: r = 0.55; Controls: r = 0.71; and AF patients: r = 0.51) and ESV (all subjects: r = 0.62; Controls: r = 0.47; and AF patients: r = 0.66) were found, with a negative bias for values determined using echo. For a subgroup of participants with ventricular volumes smaller than 49.50 mL, this bias was missing, thus in this case echocardiography could be used as an alternative for MRI. Conclusion: Good correlation and reduced bias were observed for LA Vol and EF determined by echo as compared to cardiac MRI in a mixed cohort of patients with AF and healthy volunteers. For the determination of volume values below 49.50 mL, an excellent correlation was observed between values obtained using echo and MRI, with comparatively reduced bias for the volumes determined by echo. Therefore, in certain cases, echocardiography could be used as a less expensive, less time-consuming, and contraindication free alternative to MRI for cardiac volume determination.
Collapse
Affiliation(s)
- Simona Manole
- IMOGEN Research Institute, County Clinical Emergency Hospital, 400006 Cluj-Napoca, Romania; (S.M.); (C.B.); (S.P.); (A.M.I.); (C.A.C.); (S.D.I.); (L.P.); (M.C.); (L.S.); (V.C.)
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Claudia Budurea
- IMOGEN Research Institute, County Clinical Emergency Hospital, 400006 Cluj-Napoca, Romania; (S.M.); (C.B.); (S.P.); (A.M.I.); (C.A.C.); (S.D.I.); (L.P.); (M.C.); (L.S.); (V.C.)
| | - Sorin Pop
- IMOGEN Research Institute, County Clinical Emergency Hospital, 400006 Cluj-Napoca, Romania; (S.M.); (C.B.); (S.P.); (A.M.I.); (C.A.C.); (S.D.I.); (L.P.); (M.C.); (L.S.); (V.C.)
| | - Alin M. Iliescu
- IMOGEN Research Institute, County Clinical Emergency Hospital, 400006 Cluj-Napoca, Romania; (S.M.); (C.B.); (S.P.); (A.M.I.); (C.A.C.); (S.D.I.); (L.P.); (M.C.); (L.S.); (V.C.)
| | - Cristiana A. Ciortea
- IMOGEN Research Institute, County Clinical Emergency Hospital, 400006 Cluj-Napoca, Romania; (S.M.); (C.B.); (S.P.); (A.M.I.); (C.A.C.); (S.D.I.); (L.P.); (M.C.); (L.S.); (V.C.)
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Stefania D. Iancu
- IMOGEN Research Institute, County Clinical Emergency Hospital, 400006 Cluj-Napoca, Romania; (S.M.); (C.B.); (S.P.); (A.M.I.); (C.A.C.); (S.D.I.); (L.P.); (M.C.); (L.S.); (V.C.)
- Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Loredana Popa
- IMOGEN Research Institute, County Clinical Emergency Hospital, 400006 Cluj-Napoca, Romania; (S.M.); (C.B.); (S.P.); (A.M.I.); (C.A.C.); (S.D.I.); (L.P.); (M.C.); (L.S.); (V.C.)
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Mihaela Coman
- IMOGEN Research Institute, County Clinical Emergency Hospital, 400006 Cluj-Napoca, Romania; (S.M.); (C.B.); (S.P.); (A.M.I.); (C.A.C.); (S.D.I.); (L.P.); (M.C.); (L.S.); (V.C.)
| | - László Szabó
- IMOGEN Research Institute, County Clinical Emergency Hospital, 400006 Cluj-Napoca, Romania; (S.M.); (C.B.); (S.P.); (A.M.I.); (C.A.C.); (S.D.I.); (L.P.); (M.C.); (L.S.); (V.C.)
- Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Vasile Coman
- IMOGEN Research Institute, County Clinical Emergency Hospital, 400006 Cluj-Napoca, Romania; (S.M.); (C.B.); (S.P.); (A.M.I.); (C.A.C.); (S.D.I.); (L.P.); (M.C.); (L.S.); (V.C.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Zoltán Bálint
- IMOGEN Research Institute, County Clinical Emergency Hospital, 400006 Cluj-Napoca, Romania; (S.M.); (C.B.); (S.P.); (A.M.I.); (C.A.C.); (S.D.I.); (L.P.); (M.C.); (L.S.); (V.C.)
- Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-264-405-300; Fax: +40-264-591-906
| |
Collapse
|