1
|
Zhou Y, Han Z, Zhao Z, Zhang J. Scoparone attenuates glioma progression and improves the toxicity of temozolomide by suppressing RhoA/ROCK1 signaling. ENVIRONMENTAL TOXICOLOGY 2024; 39:562-571. [PMID: 37449671 DOI: 10.1002/tox.23882] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Glioma, a type of malignant brain tumor, has become a challenging health issue globally in recent years. METHODS In this study, we investigated the potential therapeutic role of scoparone in glioma and the underlying mechanism. Initially, transcriptome sequencing was conducted to identify genes that exhibited differential expression in glioma cells treated with scoparone compared to untreated cells. Subsequently, the impact of scoparone on the proliferation, migration, and invasion of glioma cells was assessed in vitro using a range of assays including cell viability, colony formation, wound healing, and transwell assays. Moreover, the apoptotic effects of scoparone on glioma cells were evaluated through flow cytometry and western blot analysis. Furthermore, we established a glioma xenograft mouse model to assess the in vivo antitumor activity of scoparone. Lastly, by integrating transcriptome analysis, we endeavored to unravel the molecular mechanisms underlying the observed antitumor effects of scoparone by examining the expression levels of RhoA/ROCK1 signaling pathway components using western blot analysis and qRT-PCR. RESULTS Our transcriptome sequencing results revealed that scoparone significantly downregulated RhoA/ROCK1 signaling in glioma cells. Furthermore, scoparone treatment inhibited glioma cell proliferation, migration, and invasion, and promoted cell apoptosis in vitro. Moreover, scoparone reduced tumor growth and prolonged survival in a glioma xenograft mouse model, and improved the toxicity of temozolomide. Finally, our results showed that the antitumor effects of scoparone were mediated by the suppression of RhoA/ROCK1 signaling. CONCLUSION Scoparone could be a promising therapeutic agent for glioma by suppressing RhoA/ROCK1 signaling. These findings pave the way for future research endeavors aimed at the development and optimization of scoparone-based therapeutic strategies.
Collapse
Affiliation(s)
- Yuhao Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenying Han
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zilong Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Wang F, Wan J, Liao Y, Liu S, Wei Y, Ouyang Z. Dendrobium species regulate energy homeostasis in neurodegenerative diseases: a review. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
3
|
Wu M, Xu C, Jiang J, Xu S, Xiong J, Fan X, Ji K, Zhao Y, Ni H, Wang Y, Liu H, Xia Z. JAM-A facilitates hair follicle regeneration in Alopecia Areata through functioning as ceRNA to protect VCAN expression in dermal papilla cells. PRECISION CLINICAL MEDICINE 2022; 5:pbac020. [PMID: 36132055 PMCID: PMC9486988 DOI: 10.1093/pcmedi/pbac020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The dermal papilla cells in hair follicles function as critical regulators of hair growth. In particular, alopecia areata (AA) is closely related to the malfunctioning of the human dermal papilla cells (hDPCs). Thus, identifying the regulatory mechanism of hDPCs is important in inducing hair follicle (HF) regeneration in AA patients. Recently, growing evidence has indicated that 3′ untranslated regions (3′ UTR) of key genes may participate in the regulatory circuitry underlying cell differentiation and diseases through a so-called competing endogenous mechanism, but none have been reported in HF regeneration. Here, we demonstrate that the 3′ UTR of junctional adhesion molecule A (JAM-A) could act as an essential competing endogenous RNA to maintain hDPCs function and promote HF regeneration in AA. We showed that the 3′ UTR of JAM-A shares many microRNA (miRNA) response elements, especially miR-221–3p, with versican (VCAN) mRNA, and JAM-A 3′ UTR could directly modulate the miRNA-mediated suppression of VCAN in self-renewing hDPCs. Furthermore, upregulated VCAN can in turn promote the expression level of JAM-A. Overall, we propose that JAM-A 3′ UTR forms a feedback loop with VCAN and miR-221–3p to regulate hDPC maintenance, proliferation, and differentiation, which may lead to developing new therapies for hair loss.
Collapse
Affiliation(s)
- Minjuan Wu
- Department of Histology and Embryology, Naval Medical University , Shanghai, 200433 , China
- Burns Institute of People's Liberation Army, Changhai Hospital, Naval Medical University , Shanghai, 200433 , China
| | - Chen Xu
- Department of Histology and Embryology, Naval Medical University , Shanghai, 200433 , China
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University , 415th Feng Yang Road, Shanghai 200003 , China
| | - Junfeng Jiang
- Department of Histology and Embryology, Naval Medical University , Shanghai, 200433 , China
| | - Sha Xu
- Department of Histology and Embryology, Naval Medical University , Shanghai, 200433 , China
| | - Jun Xiong
- Department of Histology and Embryology, Naval Medical University , Shanghai, 200433 , China
| | - Xiaoming Fan
- Burns Institute of People's Liberation Army, Changhai Hospital, Naval Medical University , Shanghai, 200433 , China
| | - Kaihong Ji
- Department of Histology and Embryology, Naval Medical University , Shanghai, 200433 , China
| | - Yunpeng Zhao
- Department of Histology and Embryology, Naval Medical University , Shanghai, 200433 , China
| | - Haitao Ni
- Department of Histology and Embryology, Naval Medical University , Shanghai, 200433 , China
| | - Yue Wang
- Department of Histology and Embryology, Naval Medical University , Shanghai, 200433 , China
- Translational Medicine Center, Naval Medical University , 800th Xiangyin Road, Shanghai 200433 , China
| | - Houqi Liu
- Department of Histology and Embryology, Naval Medical University , Shanghai, 200433 , China
| | - Zhaofan Xia
- Burns Institute of People's Liberation Army, Changhai Hospital, Naval Medical University , Shanghai, 200433 , China
| |
Collapse
|
4
|
Gan Y, Wang H, Du L, Fan Z, Sun P, Li K, Qu Q, Wang J, Chen R, Hu Z, Miao Y. Ficoll density gradient sedimentation isolation of pelage hair follicle mesenchymal stem cells from adult mouse back skin: a novel method for hair follicle mesenchymal stem cells isolation. Stem Cell Res Ther 2022; 13:372. [PMID: 35902892 PMCID: PMC9330686 DOI: 10.1186/s13287-022-03051-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/17/2022] [Indexed: 11/19/2022] Open
Abstract
Background Hair follicle mesenchymal stem cells (HF-MSCs) have great potential for cell therapy. Traditional method to isolate whisker HF-MSC is time-consuming and few in cell numbers. How to quickly and conveniently obtain a large number of HF-MSC for experimental research is a problem worth exploring. Methods Two-step Ficoll Density Gradient Sedimentation (FDGS) was performed to isolate pelage HF-MSC from adult mice. The characteristic of the isolated cells was identified and compared with whisker HF-MSC by immunofluorescence staining, flow cytometry, three-lineage differentiation and hair follicle reconstruction. Pelage HF-MSC and exosomes were injected into the dorsal skin of mice as well as hair follicle organ culture to explore its role in promoting hair growth. The cells and exosomes distribution were located by immunofluorescence staining. Results Isolated pelage HF-MSC expressed similar markers (ALP, Versican, NCAM, Nestin), showed similar growth pattern, possessed similar mesenchymal stem cells function and hair follicle induction ability as whisker HF-MSC. A large number of cells can be obtained with fewer mice compared to traditional method. Injected pelage HF-MSC promoted hair growth by secreting exosomes. Conclusion A large number of Pelage HF-MSC can be isolated by FDGS, which can promote hair growth by secreting exosomes which may target the dermal papilla and hair matrix region of host hair follicle. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03051-3.
Collapse
Affiliation(s)
- Yuyang Gan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Hailin Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Lijuan Du
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Zhexiang Fan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Pingping Sun
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Kaitao Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Qian Qu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Jin Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Ruosi Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China.
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|