1
|
Blasi B, Sipos W, Knecht C, Dürlinger S, Ma L, Cissé OH, Nedorost N, Matt J, Weissenböck H, Weissenbacher-Lang C. Pneumocystis spp. in Pigs: A Longitudinal Quantitative Study and Co-Infection Assessment in Austrian Farms. J Fungi (Basel) 2021; 8:jof8010043. [PMID: 35049984 PMCID: PMC8779942 DOI: 10.3390/jof8010043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
While Pneumocystis has been recognized as both a ubiquitous commensal fungus in immunocompetent mammalian hosts and a major opportunistic pathogen in humans responsible for severe pneumonias in immunocompromised patients, in pigs its epidemiology and association with pulmonary diseases have been rarely reported. Nevertheless, the fungus can be quite abundant in porcine populations with up to 51% of prevalence reported so far. The current study was undertaken to longitudinally quantify Pneumocystis carinii f. sp. suis and other pulmonary pathogens in a cohort of 50 pigs from five Austrian farms (i.e., 10 pigs per farm) with a history of respiratory disease at five time points between the first week and the fourth month of life. The fungus was present as early as the suckling period (16% and 26% of the animals in the first and the third week, respectively), yet not in a high amount. Over time, both the organism load (highest 4.4 × 105 copies/mL) and prevalence (up to 88% of positive animals in the third month) increased in each farm. The relative prevalence of various coinfection patterns was significantly different over time. The current study unravelled a complex co-infection history involving Pneumocystis and other pulmonary pathogens in pigs, suggesting a relevant role of the fungus in the respiratory disease scenario of this host.
Collapse
Affiliation(s)
- Barbara Blasi
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (B.B.); (N.N.); (J.M.); (H.W.)
| | - Wolfgang Sipos
- Department for Farm Animals and Veterinary Public Health, Clinic for Swine, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (W.S.); (C.K.); (S.D.)
| | - Christian Knecht
- Department for Farm Animals and Veterinary Public Health, Clinic for Swine, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (W.S.); (C.K.); (S.D.)
| | - Sophie Dürlinger
- Department for Farm Animals and Veterinary Public Health, Clinic for Swine, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (W.S.); (C.K.); (S.D.)
| | - Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA; (L.M.); (O.H.C.)
| | - Ousmane H. Cissé
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA; (L.M.); (O.H.C.)
| | - Nora Nedorost
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (B.B.); (N.N.); (J.M.); (H.W.)
| | - Julia Matt
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (B.B.); (N.N.); (J.M.); (H.W.)
| | - Herbert Weissenböck
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (B.B.); (N.N.); (J.M.); (H.W.)
| | - Christiane Weissenbacher-Lang
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (B.B.); (N.N.); (J.M.); (H.W.)
- Correspondence: ; Tel.: +43-(1)-25077-2413
| |
Collapse
|
2
|
Fonte L, Ginori M, Calderón EJ, de Armas Y. Prevalence of Pneumocystosis in Sub-Saharan Africa and Helminth Immune Modulation. J Fungi (Basel) 2021; 8:jof8010045. [PMID: 35049985 PMCID: PMC8779910 DOI: 10.3390/jof8010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022] Open
Abstract
Sub-Saharan Africa is the region of the world with the highest prevalence of helminth infections. To protect themselves from the defensive mechanisms of their respective hosts, helminths modulate their immune responses. This modulation has relevant clinical and epidemiological consequences, including the inhibition of inflammatory processes that characterize infection by other microorganisms. Severe Pneumocystis pneumonia is characterized by an intense inflammatory reaction that can lead to death. Acquired immunodeficiency syndrome is the main predisposing factor to the development of pneumocystosis. Although the introduction of highly active antiretroviral therapy has led to a notable decline in the incidence of acquired immunodeficiency syndrome-associated complications, pneumocystosis continues to be an important global health problem. Despite the high incidence of human immunodeficiency virus infection in the sub-Saharan region, the prevalence of Pneumocystis pneumonia there has been lower than expected. Several factors, or combinations thereof, may contribute to this evolution. Here, we hypothesize the possible role of helminth immune modulation as an important issue at play. On the other hand, and looking ahead, we believe that the immune modulation achieved by helminths may be an important factor to consider during the design and evaluation processes of vaccines against Pneumocystis jirovecii to be used in Sub-Saharan Africa. The requirements of a balanced triggering of different types of immune responses for controlling the infection produced by this microorganism, as observed during experiments in animal models, support this final consideration.
Collapse
Affiliation(s)
- Luis Fonte
- Parasitology Department, Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba
- Correspondence: (L.F.); (E.J.C.); Tel.: +34-955923096 (E.J.C.)
| | - María Ginori
- Department of Teaching, Polyclinic “Plaza de la Revolución”, Havana 11300, Cuba;
| | - Enrique J. Calderón
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investiga-Ciones Científicas/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Correspondence: (L.F.); (E.J.C.); Tel.: +34-955923096 (E.J.C.)
| | - Yaxsier de Armas
- Department of Clinical Microbiology Diagnostic, Hospital Center of Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba;
- Pathology Department, Hospital Center of Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba
| |
Collapse
|
3
|
Ochoa TJ, Bustamante B, Garcia C, Neyra E, Mendoza K, Calderón EJ, Le Gal S, Miller RF, Ponce CA, Nevez G, Vargas SL. Pneumocystis primary infection in non-immunosuppressed infants in Lima, Peru. J Mycol Med 2021; 32:101202. [PMID: 34598108 DOI: 10.1016/j.mycmed.2021.101202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To provide original data on Pneumocystis primary infection in non-immunosuppressed infants from Peru. METHODS A cross sectional study was performed. Infants less than seven months old, without any underlying medical conditions attending the "well baby" outpatient clinic at one hospital in Lima, Peru were prospectively enrolled during a 15-month period from November 2016 to February 2018. All had a nasopharyngeal aspirate (NPA) for detection of P. jirovecii DNA using a PCR assay, regardless of respiratory symptoms. P. jirovecii DNA detection was considered to represent pulmonary colonization contemporaneous with Pneumocystis primary infection. Associations between infants' clinical and demographic characteristics and results of P. jirovecii DNA detection were analyzed. RESULTS P. jirovecii DNA was detected in 45 of 146 infants (30.8%) and detection was not associated with concurrent respiratory symptoms in 40 of 45 infants. Infants with P. jirovecii had a lower mean age when compared to infants not colonized (p <0.05). The highest frequency of P. jirovecii was observed in 2-3-month-old infants (p < 0.01) and in the cooler winter and spring seasons (p <0.01). Multivariable analysis showed that infants living in a home with ≤ 1 bedroom were more likely to be colonized; Odds Ratio =3.03 (95%CI 1.31-7.00; p = 0.01). CONCLUSION Pneumocystis primary infection in this single site in Lima, Peru, was most frequently observed in 2-3-month-old infants, in winter and spring seasons, and with higher detection rates being associated with household conditions favoring close inter-individual contacts and potential transmission of P. jirovecii.
Collapse
Affiliation(s)
- Theresa J Ochoa
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Perú; School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Perú.
| | - Beatriz Bustamante
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Perú; Hospital Cayetano Heredia, Lima, Perú
| | - Coralith Garcia
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Perú; School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Perú; Hospital Cayetano Heredia, Lima, Perú
| | - Edgar Neyra
- School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Perú; Genomic Research Unit, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Karina Mendoza
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Enrique J Calderón
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, and Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Solene Le Gal
- Groupe d'Étude des Interactions Hôte-Pathogène (GEIHP)-Université d'Angers, Université de Brest, Brest, France; Laboratoire de Mycologie et Parasitologie, CHRU de Brest, Brest, France
| | - Robert F Miller
- Centre for Clinical Research in Infection and Sexual Health, Institute for Global Health, University College London, London, United Kingdom; Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Carolina A Ponce
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Gilles Nevez
- Groupe d'Étude des Interactions Hôte-Pathogène (GEIHP)-Université d'Angers, Université de Brest, Brest, France; Laboratoire de Mycologie et Parasitologie, CHRU de Brest, Brest, France.
| | - Sergio L Vargas
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Bonnet P, Le Gal S, Calderon E, Delhaes L, Quinio D, Robert-Gangneux F, Ramel S, Nevez G. Pneumocystis jirovecii in Patients With Cystic Fibrosis: A Review. Front Cell Infect Microbiol 2020; 10:571253. [PMID: 33117730 PMCID: PMC7553083 DOI: 10.3389/fcimb.2020.571253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Pneumocystis pneumonia (PCP) remains the most frequent AIDS-defining illness in developed countries. This infection also occurs in non-AIDS immunosuppressed patients, e.g., those who have undergone an organ transplantation. Moreover, mild Pneumocystis jirovecii infections related to low pulmonary fungal burden, frequently designated as pulmonary colonization, occurs in patients with chronic pulmonary diseases, e.g., cystic fibrosis (CF). Indeed, this autosomal recessive disorder alters mucociliary clearance leading to bacterial and fungal colonization of the airways. This mini-review compiles and discusses available information on P. jirovecii and CF. It highlights significant differences in the prevalence of P. jirovecii pulmonary colonization in European and Brazilian CF patients. It also describes the microbiota associated with P. jirovecii in CF patients colonized by P. jirovecii. Furthermore, we have described P. jirovecii genomic diversity in colonized CF patients. In addition of pulmonary colonization, it appears that PCP can occur in CF patients specifically after lung transplantation, thus requiring preventive strategies. In other respects, Pneumocystis primary infection is a worldwide phenomenon occurring in non-immunosuppressed infants within their first months. The primary infection is mostly asymptomatic but it can also present as a benign self-limiting infection. It probably occurs in the same manner in CF infants. Nonetheless, two cases of severe Pneumocystis primary infection mimicking PCP in CF infants have been reported, the genetic disease appearing in these circumstances as a risk factor of PCP while the host-pathogen interaction in older children and adults with pulmonary colonization remains to be clarified.
Collapse
Affiliation(s)
- Pierre Bonnet
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, Brest, France
| | - Solène Le Gal
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, Brest, France.,Groupe d'Etude des Interactions Hôte-Pathogène (ER, GEIHP), Université d'Angers, Université de Brest, Brest, France
| | - Enrique Calderon
- CIBER de Epidemiologia y Salud Publica and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Laurence Delhaes
- Laboratory of Parasitology and Mycology, Bordeaux University Hospital, Bordeaux, France Inserm U1045 - University of Bordeaux, Bordeaux, France
| | - Dorothée Quinio
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, Brest, France
| | - Florence Robert-Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement Travail), UMR_S 1085, Rennes, France
| | - Sophie Ramel
- Centre de Ressources et de Compétences de la Mucoviscidose, Fondation Ildys, Roscoff, France
| | - Gilles Nevez
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, Brest, France.,Groupe d'Etude des Interactions Hôte-Pathogène (ER, GEIHP), Université d'Angers, Université de Brest, Brest, France
| |
Collapse
|