1
|
Impact of Antibiotics as Waste, Physical, Chemical, and Enzymatical Degradation: Use of Laccases. Molecules 2022; 27:molecules27144436. [PMID: 35889311 PMCID: PMC9319608 DOI: 10.3390/molecules27144436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The first traces of Tetracycline (TE) were detected in human skeletons from Sudan and Egypt, finding that it may be related to the diet of the time, the use of some dyes, and the use of soils loaded with microorganisms, such as Streptomyces spp., among other microorganisms capable of producing antibiotics. However, most people only recognise authors dating between 1904 and 1940, such as Ehrlich, Domagk, and Fleming. Antibiotics are the therapeutic option for countless infections treatment; unfortunately, they are the second most common group of drugs in wastewaters worldwide due to failures in industrial waste treatments (pharmaceutics, hospitals, senior residences) and their irrational use in humans and animals. The main antibiotics problem lies in delivered and non-prescribed human use, use in livestock as growth promoters, and crop cultivation as biocides (regulated activities that have not complied in some places). This practice has led to the toxicity of the environment as antibiotics generate eutrophication, water pollution, nutrient imbalance, and press antibiotic resistance. In addition, the removal of antibiotics is not a required process in global wastewater treatment standards. This review aims to raise awareness of the negative impact of antibiotics as residues and physical, chemical, and biological treatments for their degradation. We discuss the high cost of physical and chemical treatments, the risk of using chemicals that worsen the situation, and the fact that each antibiotic class can be transformed differently with each of these treatments and generate new compounds that could be more toxic than the original ones; also, we discuss the use of enzymes for antibiotic degradation, with emphasis on laccases.
Collapse
|
2
|
Bustos E, Sandoval-González A, Martínez-Sánchez C. Detection and Treatment of Persistent Pollutants in Water: General Review of Pharmaceutical Products. ChemElectroChem 2022. [DOI: 10.1002/celc.202200188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Erika Bustos
- Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Science Centro de Investigación y Desarrollo Tecnológico en Electroq76703México 76703 Pedro Escobedo MEXICO
| | - Antonia Sandoval-González
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC: Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Science Parque Tecnológico Querétaro s/nSanfandila 76703 Pedro Escobedo MEXICO
| | - Carolina Martínez-Sánchez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC: Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Science Parque Tecnológico Querétaro s/nSanfandila 76703 Pedro Escobedo MEXICO
| |
Collapse
|
3
|
Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO. SUSTAINABILITY 2021. [DOI: 10.3390/su13115924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The study of biotic and abiotic factors and their interrelationships is essential in the preservation of sustainable marine ecosystems and for understanding the impact that climate change can have on different species. For instance, phytoplankton are extremely vulnerable to environmental changes and thus studying the factors involved is important for the species’ conservation. This work examines the relationship between phytoplankton and environmental parameters of the eastern equatorial Pacific, known as one of the most biologically rich regions in the world. For this purpose, a new multivariate method called MixSTATICO has been developed, allowing mixed-type data structured in two different groups (environment and species) to be related and measured on a space–time scale. The results obtained show how seasons have an impact on species–environment relations, with the most significant association occurring in November and the weakest during the month of May (change of season). The species Lauderia borealis, Chaetoceros didymus and Gyrodinium sp. were not observed in the coastal profiles during the dry season at most stations, while during the rainy season, the species Dactyliosolen antarcticus, Proboscia alata and Skeletonema costatum were not detected. Using MixSTATICO, species vulnerable to specific geographical locations and environmental variations were identified, making it possible to establish biological indicators for this region.
Collapse
|