1
|
Kim SY, Park J, Choi H, Loeser M, Ryu H, Seo K. Digital Marker for Early Screening of Mild Cognitive Impairment Through Hand and Eye Movement Analysis in Virtual Reality Using Machine Learning: First Validation Study. J Med Internet Res 2023; 25:e48093. [PMID: 37862101 PMCID: PMC10625097 DOI: 10.2196/48093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/07/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND With the global rise in Alzheimer disease (AD), early screening for mild cognitive impairment (MCI), which is a preclinical stage of AD, is of paramount importance. Although biomarkers such as cerebrospinal fluid amyloid level and magnetic resonance imaging have been studied, they have limitations, such as high cost and invasiveness. Digital markers to assess cognitive impairment by analyzing behavioral data collected from digital devices in daily life can be a new alternative. In this context, we developed a "virtual kiosk test" for early screening of MCI by analyzing behavioral data collected when using a kiosk in a virtual environment. OBJECTIVE We aimed to investigate key behavioral features collected from a virtual kiosk test that could distinguish patients with MCI from healthy controls with high statistical significance. Also, we focused on developing a machine learning model capable of early screening of MCI based on these behavioral features. METHODS A total of 51 participants comprising 20 healthy controls and 31 patients with MCI were recruited by 2 neurologists from a university hospital. The participants performed a virtual kiosk test-developed by our group-where we recorded various behavioral data such as hand and eye movements. Based on these time series data, we computed the following 4 behavioral features: hand movement speed, proportion of fixation duration, time to completion, and the number of errors. To compare these behavioral features between healthy controls and patients with MCI, independent-samples 2-tailed t tests were used. Additionally, we used these behavioral features to train and validate a machine learning model for early screening of patients with MCI from healthy controls. RESULTS In the virtual kiosk test, all 4 behavioral features showed statistically significant differences between patients with MCI and healthy controls. Compared with healthy controls, patients with MCI had slower hand movement speed (t49=3.45; P=.004), lower proportion of fixation duration (t49=2.69; P=.04), longer time to completion (t49=-3.44; P=.004), and a greater number of errors (t49=-3.77; P=.001). All 4 features were then used to train a support vector machine to distinguish between healthy controls and patients with MCI. Our machine learning model achieved 93.3% accuracy, 100% sensitivity, 83.3% specificity, 90% precision, and 94.7% F1-score. CONCLUSIONS Our research preliminarily suggests that analyzing hand and eye movements in the virtual kiosk test holds potential as a digital marker for early screening of MCI. In contrast to conventional biomarkers, this digital marker in virtual reality is advantageous as it can collect ecologically valid data at an affordable cost and in a short period (5-15 minutes), making it a suitable means for early screening of MCI. We call for further studies to confirm the reliability and validity of this approach.
Collapse
Affiliation(s)
- Se Young Kim
- Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Jinseok Park
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hojin Choi
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Martin Loeser
- Department of Computer Science, Electrical Engineering and Mechatronics, ZHAW Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Hokyoung Ryu
- Graduate School of Technology and Innovation Management, Hanyang University, Seoul, Republic of Korea
| | - Kyoungwon Seo
- Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
2
|
Yao W, Chen H, Luo C, Sheng X, Zhao H, Xu Y, Bai F. Hyperconnectivity of Self-Referential Network as a Predictive Biomarker of the Progression of Alzheimer's Disease. J Alzheimers Dis 2021; 80:577-590. [PMID: 33579849 DOI: 10.3233/jad-201376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Self-referential processing is associated with the progression of Alzheimer's disease (AD), and cerebrospinal fluid (CSF) proteins have become accepted biomarkers of AD. OBJECTIVE Our objective in this study was to focus on the relationships between the self-referential network (SRN) and CSF pathology in AD-spectrum patients. METHODS A total of 80 participants, including 20 cognitively normal, 20 early mild cognitive impairment (EMCI), 20 late MCI (LMCI), and 20 AD, were recruited for this study. Independent component analysis was used to explore the topological SRN patterns, and the abnormalities of this network were identified at different stages of AD. Finally, CSF pathological characteristics (i.e., CSF Aβ, t-tau, and p-tau) that affected the abnormalities of the SRN were further determined during the progression of AD. RESULTS Compared to cognitively normal subjects, AD-spectrum patients (i.e., EMCI, LMCI, and AD) showed a reversing trend toward an association between CSF pathological markers and the abnormal SRN occurring during the progression of AD. However, a certain disease state (i.e., the present LMCI) with a low concentration of CSF tau could evoke more hyperconnectivity of the SRN than other patients with progressively increasing concentrations of CSF tau (i.e., EMCI and AD), and this fluctuation of CSF tau was more sensitive to the hyperconnectivity of the SRN than the dynamic changes of CSF Aβ. CONCLUSION The integrity of the SRN was closely associated with CSF pathological characteristics, and these findings support the view that the hyperconnectivity of the SRN will play an important role in monitoring the progression of the pre-dementia state to AD.
Collapse
Affiliation(s)
- Weina Yao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haifeng Chen
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Caimei Luo
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xiaoning Sheng
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Hui Zhao
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | | |
Collapse
|