1
|
Parikh M, Tejaswi S, Girotra T, Chopra S, Ramai D, Tabibian JH, Jagannath S, Ofosu A, Barakat MT, Mishra R, Girotra M. Use of Artificial Intelligence in Lower Gastrointestinal and Small Bowel Disorders: An Update Beyond Polyp Detection. J Clin Gastroenterol 2025; 59:121-128. [PMID: 39774596 DOI: 10.1097/mcg.0000000000002115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Machine learning and its specialized forms, such as Artificial Neural Networks and Convolutional Neural Networks, are increasingly being used for detecting and managing gastrointestinal conditions. Recent advancements involve using Artificial Neural Network models to enhance predictive accuracy for severe lower gastrointestinal (LGI) bleeding outcomes, including the need for surgery. To this end, artificial intelligence (AI)-guided predictive models have shown promise in improving management outcomes. While much literature focuses on AI in early neoplasia detection, this review highlights AI's role in managing LGI and small bowel disorders, including risk stratification for LGI bleeding, quality control, evaluation of inflammatory bowel disease, and video capsule endoscopy reading. Overall, the integration of AI into routine clinical practice is still developing, with ongoing research aimed at addressing current limitations and gaps in patient care.
Collapse
Affiliation(s)
| | - Sooraj Tejaswi
- University of California, Davis
- Sutter Health, Sacramento
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Yin K, Liang H, Guo W, Chen YX, Cui ML, Zhang MX. Artificial intelligence and early cancer of the digestive tract: New challenges and new futures. Shijie Huaren Xiaohua Zazhi 2025; 33:1-10. [DOI: 10.11569/wcjd.v33.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 01/22/2025] Open
Abstract
Early gastrointestinal tumors have a good prognosis, but they have insidious onset and no specific manifestations, making their diagnosis difficult. With the rapid development of artificial intelligence technology in the medical field, it has shown great potential in clinical work such as diagnosis and prognosis prediction of early gastrointestinal cancer. In this paper, we systematically review the relevant studies on AI in early esophageal cancer, early gastric cancer, early colon cancer, and hepatobiliary pancreatic cancer, and discuss the challenges and futures of AI application in early gastrointestinal cancer.
Collapse
Affiliation(s)
- Kun Yin
- Xi'an Medical College, Xi'an 710021, Shaanxi Province, China
| | - Hao Liang
- Xi'an Medical College, Xi'an 710021, Shaanxi Province, China
| | - Wen Guo
- Xi'an Medical College, Xi'an 710021, Shaanxi Province, China
| | - Ya-Xin Chen
- Xi'an Medical College, Xi'an 710021, Shaanxi Province, China
| | - Man-Li Cui
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Medical College, Xi'an 710077, Shaanxi Province, China
| | - Ming-Xin Zhang
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Medical College, Xi'an 710077, Shaanxi Province, China
| |
Collapse
|
3
|
Zha B, Cai A, Wang G. Diagnostic Accuracy of Artificial Intelligence in Endoscopy: Umbrella Review. JMIR Med Inform 2024; 12:e56361. [PMID: 39093715 PMCID: PMC11296324 DOI: 10.2196/56361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 08/04/2024] Open
Abstract
Background Some research has already reported the diagnostic value of artificial intelligence (AI) in different endoscopy outcomes. However, the evidence is confusing and of varying quality. Objective This review aimed to comprehensively evaluate the credibility of the evidence of AI's diagnostic accuracy in endoscopy. Methods Before the study began, the protocol was registered on PROSPERO (CRD42023483073). First, 2 researchers searched PubMed, Web of Science, Embase, and Cochrane Library using comprehensive search terms. Then, researchers screened the articles and extracted information. We used A Measurement Tool to Assess Systematic Reviews 2 (AMSTAR2) to evaluate the quality of the articles. When there were multiple studies aiming at the same result, we chose the study with higher-quality evaluations for further analysis. To ensure the reliability of the conclusions, we recalculated each outcome. Finally, the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) was used to evaluate the credibility of the outcomes. Results A total of 21 studies were included for analysis. Through AMSTAR2, it was found that 8 research methodologies were of moderate quality, while other studies were regarded as having low or critically low quality. The sensitivity and specificity of 17 different outcomes were analyzed. There were 4 studies on esophagus, 4 studies on stomach, and 4 studies on colorectal regions. Two studies were associated with capsule endoscopy, two were related to laryngoscopy, and one was related to ultrasonic endoscopy. In terms of sensitivity, gastroesophageal reflux disease had the highest accuracy rate, reaching 97%, while the invasion depth of colon neoplasia, with 71%, had the lowest accuracy rate. On the other hand, the specificity of colorectal cancer was the highest, reaching 98%, while the gastrointestinal stromal tumor, with only 80%, had the lowest specificity. The GRADE evaluation suggested that the reliability of most outcomes was low or very low. Conclusions AI proved valuabe in endoscopic diagnoses, especially in esophageal and colorectal diseases. These findings provide a theoretical basis for developing and evaluating AI-assisted systems, which are aimed at assisting endoscopists in carrying out examinations, leading to improved patient health outcomes. However, further high-quality research is needed in the future to fully validate AI's effectiveness.
Collapse
Affiliation(s)
- Bowen Zha
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Angshu Cai
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guiqi Wang
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Davila-Piñón P, Nogueira-Rodríguez A, Díez-Martín AI, Codesido L, Herrero J, Puga M, Rivas L, Sánchez E, Fdez-Riverola F, Glez-Peña D, Reboiro-Jato M, López-Fernández H, Cubiella J. Optical diagnosis in still images of colorectal polyps: comparison between expert endoscopists and PolyDeep, a Computer-Aided Diagnosis system. Front Oncol 2024; 14:1393815. [PMID: 38846970 PMCID: PMC11153726 DOI: 10.3389/fonc.2024.1393815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 06/09/2024] Open
Abstract
Background PolyDeep is a computer-aided detection and classification (CADe/x) system trained to detect and classify polyps. During colonoscopy, CADe/x systems help endoscopists to predict the histology of colonic lesions. Objective To compare the diagnostic performance of PolyDeep and expert endoscopists for the optical diagnosis of colorectal polyps on still images. Methods PolyDeep Image Classification (PIC) is an in vitro diagnostic test study. The PIC database contains NBI images of 491 colorectal polyps with histological diagnosis. We evaluated the diagnostic performance of PolyDeep and four expert endoscopists for neoplasia (adenoma, sessile serrated lesion, traditional serrated adenoma) and adenoma characterization and compared them with the McNemar test. Receiver operating characteristic curves were constructed to assess the overall discriminatory ability, comparing the area under the curve of endoscopists and PolyDeep with the chi- square homogeneity areas test. Results The diagnostic performance of the endoscopists and PolyDeep in the characterization of neoplasia is similar in terms of sensitivity (PolyDeep: 89.05%; E1: 91.23%, p=0.5; E2: 96.11%, p<0.001; E3: 86.65%, p=0.3; E4: 91.26% p=0.3) and specificity (PolyDeep: 35.53%; E1: 33.80%, p=0.8; E2: 34.72%, p=1; E3: 39.24%, p=0.8; E4: 46.84%, p=0.2). The overall discriminative ability also showed no statistically significant differences (PolyDeep: 0.623; E1: 0.625, p=0.8; E2: 0.654, p=0.2; E3: 0.629, p=0.9; E4: 0.690, p=0.09). In the optical diagnosis of adenomatous polyps, we found that PolyDeep had a significantly higher sensitivity and a significantly lower specificity. The overall discriminative ability of adenomatous lesions by expert endoscopists is significantly higher than PolyDeep (PolyDeep: 0.582; E1: 0.685, p < 0.001; E2: 0.677, p < 0.0001; E3: 0.658, p < 0.01; E4: 0.694, p < 0.0001). Conclusion PolyDeep and endoscopists have similar diagnostic performance in the optical diagnosis of neoplastic lesions. However, endoscopists have a better global discriminatory ability than PolyDeep in the optical diagnosis of adenomatous polyps.
Collapse
Affiliation(s)
- Pedro Davila-Piñón
- Research Group in Gastrointestinal Oncology Ourense, Hospital Universitario de Ourense, Ourense, Spain
- Fundación Pública Galega de Investigación Biomédica Galicia Sur, Complexo Hospitalario Universitario de Ourense, Sergas, Ourense, Spain
| | - Alba Nogueira-Rodríguez
- Department of Computer Science, Escuela Superior de Ingenieria Informática (ESEI), CINBIO, University of Vigo, Ourense, Spain
- Next Generation Computer Systems Group (SING) Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Ourense, Spain
| | - Astrid Irene Díez-Martín
- Research Group in Gastrointestinal Oncology Ourense, Hospital Universitario de Ourense, Ourense, Spain
- Fundación Pública Galega de Investigación Biomédica Galicia Sur, Complexo Hospitalario Universitario de Ourense, Sergas, Ourense, Spain
| | - Laura Codesido
- Research Group in Gastrointestinal Oncology Ourense, Hospital Universitario de Ourense, Ourense, Spain
- Fundación Pública Galega de Investigación Biomédica Galicia Sur, Complexo Hospitalario Universitario de Ourense, Sergas, Ourense, Spain
| | - Jesús Herrero
- Research Group in Gastrointestinal Oncology Ourense, Hospital Universitario de Ourense, Ourense, Spain
- Department of Gastroenterology, Hospital Universitario de Ourense, Ourense, Spain
- Department of Gastroenterology, Hospital Universitario de Ourense, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Ourense, Spain
| | - Manuel Puga
- Research Group in Gastrointestinal Oncology Ourense, Hospital Universitario de Ourense, Ourense, Spain
- Department of Gastroenterology, Hospital Universitario de Ourense, Ourense, Spain
- Department of Gastroenterology, Hospital Universitario de Ourense, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Ourense, Spain
| | - Laura Rivas
- Research Group in Gastrointestinal Oncology Ourense, Hospital Universitario de Ourense, Ourense, Spain
- Department of Gastroenterology, Hospital Universitario de Ourense, Ourense, Spain
- Department of Gastroenterology, Hospital Universitario de Ourense, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Ourense, Spain
| | - Eloy Sánchez
- Research Group in Gastrointestinal Oncology Ourense, Hospital Universitario de Ourense, Ourense, Spain
- Department of Gastroenterology, Hospital Universitario de Ourense, Ourense, Spain
- Department of Gastroenterology, Hospital Universitario de Ourense, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Ourense, Spain
| | - Florentino Fdez-Riverola
- Department of Computer Science, Escuela Superior de Ingenieria Informática (ESEI), CINBIO, University of Vigo, Ourense, Spain
- Next Generation Computer Systems Group (SING) Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Ourense, Spain
| | - Daniel Glez-Peña
- Department of Computer Science, Escuela Superior de Ingenieria Informática (ESEI), CINBIO, University of Vigo, Ourense, Spain
- Next Generation Computer Systems Group (SING) Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Ourense, Spain
| | - Miguel Reboiro-Jato
- Department of Computer Science, Escuela Superior de Ingenieria Informática (ESEI), CINBIO, University of Vigo, Ourense, Spain
- Next Generation Computer Systems Group (SING) Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Ourense, Spain
| | - Hugo López-Fernández
- Department of Computer Science, Escuela Superior de Ingenieria Informática (ESEI), CINBIO, University of Vigo, Ourense, Spain
- Next Generation Computer Systems Group (SING) Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Ourense, Spain
| | - Joaquín Cubiella
- Research Group in Gastrointestinal Oncology Ourense, Hospital Universitario de Ourense, Ourense, Spain
- Department of Gastroenterology, Hospital Universitario de Ourense, Ourense, Spain
- Department of Gastroenterology, Hospital Universitario de Ourense, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Ourense, Spain
| |
Collapse
|
5
|
Kim J, Lim SH, Kang HY, Song JH, Yang SY, Chung GE, Jin EH, Choi JM, Bae JH. Impact of 3-second rule for high confidence assignment on the performance of endoscopists for the real-time optical diagnosis of colorectal polyps. Endoscopy 2023; 55:945-951. [PMID: 37172938 DOI: 10.1055/a-2073-3411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND Confusion between high and low confidence decisions in optical diagnosis hinders the implementation of real-time optical diagnosis in clinical practice. We evaluated the effect of a 3-second rule (decision time limited to 3 seconds for a high confidence assignment) in expert and nonexpert endoscopists. METHODS This single-center prospective study included eight board-certified gastroenterologists. A 2-month baseline phase used standard real-time optical diagnosis for colorectal polyps < 10 mm and was followed by a 6-month intervention phase using optical diagnosis with the 3-second rule. Performance, including high confidence accuracy, and Preservation and Incorporation of Valuable Endoscopic Innovations (PIVI) and Simple Optical Diagnosis Accuracy (SODA) thresholds, was measured. RESULTS Real-time optical diagnosis was performed on 1793 patients with 3694 polyps. There was significant improvement in high confidence accuracy between baseline and intervention phases in the nonexpert group (79.2 % vs. 86.3 %; P = 0.01) but not in the expert group (85.3 % vs. 87.5 %; P = 0.53). Using the 3-second rule improved the overall performance of PIVI and SODA in both groups. CONCLUSIONS The 3-second rule was effective in improving real-time optical diagnosis performance, especially in nonexperts.
Collapse
Affiliation(s)
- Jung Kim
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
| | - Seon Hee Lim
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
| | - Hae Yeon Kang
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
| | - Ji Hyun Song
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
| | - Sun Young Yang
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
| | - Goh Eun Chung
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
| | - Eun Hyo Jin
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
| | - Ji Min Choi
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
| | - Jung Ho Bae
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
6
|
Shakir T, Kader R, Bhan C, Chand M. AI in colonoscopy - detection and characterisation of malignant polyps. ARTIFICIAL INTELLIGENCE SURGERY 2023:186-94. [DOI: 10.20517/ais.2023.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The medical technological revolution has transformed the nature with which we deliver care. Adjuncts such as artificial intelligence and machine learning have underpinned this. The applications to the field of endoscopy are numerous. Malignant polyps represent a significant diagnostic dilemma as they lie in an area in which mischaracterisation may mean the difference between an endoscopic procedure and a formal bowel resection. This has implications for patients’ oncological outcomes, morbidity and mortality, especially if post-procedure histopathology upstages disease. We have made significant strides with the applications of artificial intelligence to colonoscopic detection. Deep learning algorithms are able to be created from video and image databases. These have been applied to traditional, human-derived, classification methods, such as Paris or Kudo, with up to 93% accuracy. Furthermore, multimodal characterisation systems have been developed, which also factor in patient demographics and colonic location to provide an estimation of invasion and endoscopic resectability with over 90% accuracy. Although the technology is still evolving, and the lack of high-quality randomised controlled trials limits clinical usability, there is an exciting horizon upon us for artificial intelligence-augmented endoscopy.
Collapse
|
7
|
Li JW, Wu CCH, Lee JWJ, Liang R, Soon GST, Wang LM, Koh XH, Koh CJ, Chew WD, Lin KW, Thian MY, Matthew R, Kim G, Khor CJL, Fock KM, Ang TL, So JBY. Real-World Validation of a Computer-Aided Diagnosis System for Prediction of Polyp Histology in Colonoscopy: A Prospective Multicenter Study. Am J Gastroenterol 2023; 118:1353-1364. [PMID: 37040553 DOI: 10.14309/ajg.0000000000002282] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
INTRODUCTION Computer-aided diagnosis (CADx) of polyp histology could support endoscopists in clinical decision-making. However, this has not been validated in a real-world setting. METHODS We performed a prospective, multicenter study comparing CADx and endoscopist predictions of polyp histology in real-time colonoscopy. Optical diagnosis based on visual inspection of polyps was made by experienced endoscopists. After this, the automated output from the CADx support tool was recorded. All imaged polyps were resected for histological assessment. Primary outcome was difference in diagnostic performance between CADx and endoscopist prediction of polyp histology. Subgroup analysis was performed for polyp size, bowel preparation, difficulty of location of the polyps, and endoscopist experience. RESULTS A total of 661 eligible polyps were resected in 320 patients aged ≥40 years between March 2021 and July 2022. CADx had an overall accuracy of 71.6% (95% confidence interval [CI] 68.0-75.0), compared with 75.2% (95% CI 71.7-78.4) for endoscopists ( P = 0.023). The sensitivity of CADx for neoplastic polyps was 61.8% (95% CI 56.9-66.5), compared with 70.3% (95% CI 65.7-74.7) for endoscopists ( P < 0.001). The interobserver agreement between CADx and endoscopist predictions of polyp histology was moderate (83.1% agreement, κ 0.661). When there was concordance between CADx and endoscopist predictions, the accuracy increased to 78.1%. DISCUSSION The overall diagnostic accuracy and sensitivity for neoplastic polyps was higher in experienced endoscopists compared with CADx predictions, with moderate interobserver agreement. Concordance in predictions increased this diagnostic accuracy. Further research is required to improve the performance of CADx and to establish its role in clinical practice.
Collapse
Affiliation(s)
- James Weiquan Li
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, Singapore
- Duke-NUS Academic Medicine Centre, Singapore Health Services, Singapore
| | - Clement Chun Ho Wu
- Duke-NUS Academic Medicine Centre, Singapore Health Services, Singapore
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore Health Services, Singapore
| | - Jonathan Wei Jie Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, National University Health System, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Institute of Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - Raymond Liang
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, National Healthcare Group, Singapore
| | - Gwyneth Shook Ting Soon
- Department of Pathology, National University Hospital, National University Health System, Singapore
| | - Lai Mun Wang
- Department of Laboratory Medicine, Changi General Hospital, Singapore Health Services, Singapore
| | - Xuan Han Koh
- Department of Health Sciences Research, Changi General Hospital, Singapore
| | - Calvin Jianyi Koh
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, National University Health System, Singapore
| | - Wei Da Chew
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, National Healthcare Group, Singapore
| | - Kenneth Weicong Lin
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, Singapore
- Duke-NUS Academic Medicine Centre, Singapore Health Services, Singapore
| | - Mann Yie Thian
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, National Healthcare Group, Singapore
| | - Ronnie Matthew
- Department of Colorectal Surgery, Singapore General Hospital, Singapore Health Services, Singapore
| | - Guowei Kim
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- University Surgical Cluster, National University Hospital, Singapore
| | - Christopher Jen Lock Khor
- Duke-NUS Academic Medicine Centre, Singapore Health Services, Singapore
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore Health Services, Singapore
| | - Kwong Ming Fock
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, Singapore
- Duke-NUS Academic Medicine Centre, Singapore Health Services, Singapore
| | - Tiing Leong Ang
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, Singapore
- Duke-NUS Academic Medicine Centre, Singapore Health Services, Singapore
| | - Jimmy Bok Yan So
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- University Surgical Cluster, National University Hospital, Singapore
| |
Collapse
|
8
|
Galati JS, Lin K, Gross SA. Recent advances in devices and technologies that might prove revolutionary for colonoscopy procedures. Expert Rev Med Devices 2023; 20:1087-1103. [PMID: 37934873 DOI: 10.1080/17434440.2023.2280773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the third most common malignancy and second leading cause of cancer-related mortality in the world. Adenoma detection rate (ADR), a quality indicator for colonoscopy, has gained prominence as it is inversely related to CRC incidence and mortality. As such, recent efforts have focused on developing novel colonoscopy devices and technologies to improve ADR. AREAS COVERED The main objective of this paper is to provide an overview of advancements in the fields of colonoscopy mechanical attachments, artificial intelligence-assisted colonoscopy, and colonoscopy optical enhancements with respect to ADR. We accomplished this by performing a comprehensive search of multiple electronic databases from inception to September 2023. This review is intended to be an introduction to colonoscopy devices and technologies. EXPERT OPINION Numerous mechanical attachments and optical enhancements have been developed that have the potential to improve ADR and AI has gone from being an inaccessible concept to a feasible means for improving ADR. While these advances are exciting and portend a change in what will be considered standard colonoscopy, they continue to require refinement. Future studies should focus on combining modalities to further improve ADR and exploring the use of these technologies in other facets of colonoscopy.
Collapse
Affiliation(s)
- Jonathan S Galati
- Department of Internal Medicine, NYU Langone Health, New York, NY, USA
| | - Kevin Lin
- Department of Internal Medicine, NYU Langone Health, New York, NY, USA
| | - Seth A Gross
- Division of Gastroenterology, NYU Langone Health, New York, NY, USA
| |
Collapse
|
9
|
Zhang B, Zhu F, Li P, Zhu J. Artificial intelligence-assisted endoscopic ultrasound in the diagnosis of gastrointestinal stromal tumors: a meta-analysis. Surg Endosc 2023; 37:1649-1657. [PMID: 36100781 DOI: 10.1007/s00464-022-09597-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND AND AIMS Endoscopic ultrasonography (EUS) is useful for the diagnosis of gastrointestinal stromal tumors (GISTs), but is limited by subjective interpretation. Studies on artificial intelligence (AI)-assisted diagnosis are under development. Here, we used a meta-analysis to evaluate the diagnostic performance of AI in the diagnosis of GISTs using EUS images. METHODS PubMed, Ovid Medline, Embase, Web of science, and the Cochrane Library databases were searched for studies based on the EUS using AI for the diagnosis of GISTs, and a meta-analysis was performed to examine the accuracy. RESULTS Overall, 7 studies were included in our meta-analysis. A total of 2431 patients containing more than 36,186 images were used as the overall dataset, of which 480 patients were used for the final testing. The pooled sensitivity, specificity, positive, and negative likelihood ratio (LR) of AI-assisted EUS for differentiating GISTs from other submucosal tumors (SMTs) were 0.92 (95% confidence interval [CI] 0.89-0.95), 0.82 (95% CI 0.75-0.87), 4.55 (95% CI 2.64-7.84), and 0.12 (95% CI 0.07-0.20), respectively. The summary diagnostic odds ratio (DOR) and the area under the curve were 64.70 (95% CI 23.83-175.69) and 0.950 (Q* = 0.891). CONCLUSIONS AI-assisted EUS showed high accuracy for the automatic endoscopic diagnosis of GISTs, which could be used as a valuable complementary method for the differentiation of SMTs in the future.
Collapse
Affiliation(s)
- Binglan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Fuping Zhu
- Department of General Surgery, The Ninth People's Hospital of Chongqing, Chongqing, 400700, China
| | - Pan Li
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jing Zhu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
10
|
Galati JS, Duve RJ, O'Mara M, Gross SA. Artificial intelligence in gastroenterology: A narrative review. Artif Intell Gastroenterol 2022; 3:117-141. [DOI: 10.35712/aig.v3.i5.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Artificial intelligence (AI) is a complex concept, broadly defined in medicine as the development of computer systems to perform tasks that require human intelligence. It has the capacity to revolutionize medicine by increasing efficiency, expediting data and image analysis and identifying patterns, trends and associations in large datasets. Within gastroenterology, recent research efforts have focused on using AI in esophagogastroduodenoscopy, wireless capsule endoscopy (WCE) and colonoscopy to assist in diagnosis, disease monitoring, lesion detection and therapeutic intervention. The main objective of this narrative review is to provide a comprehensive overview of the research being performed within gastroenterology on AI in esophagogastroduodenoscopy, WCE and colonoscopy.
Collapse
Affiliation(s)
- Jonathan S Galati
- Department of Medicine, NYU Langone Health, New York, NY 10016, United States
| | - Robert J Duve
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States
| | - Matthew O'Mara
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| | - Seth A Gross
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| |
Collapse
|
11
|
Gong EJ, Bang CS, Lee JJ, Yang YJ, Baik GH. Impact of the Volume and Distribution of Training Datasets in the Development of Deep-Learning Models for the Diagnosis of Colorectal Polyps in Endoscopy Images. J Pers Med 2022; 12:jpm12091361. [PMID: 36143146 PMCID: PMC9505038 DOI: 10.3390/jpm12091361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Establishment of an artificial intelligence model in gastrointestinal endoscopy has no standardized dataset. The optimal volume or class distribution of training datasets has not been evaluated. An artificial intelligence model was previously created by the authors to classify endoscopic images of colorectal polyps into four categories, including advanced colorectal cancer, early cancers/high-grade dysplasia, tubular adenoma, and nonneoplasm. The aim of this study was to evaluate the impact of the volume and distribution of training dataset classes in the development of deep-learning models for colorectal polyp histopathology prediction from endoscopic images. Methods: The same 3828 endoscopic images that were used to create earlier models were used. An additional 6838 images were used to find the optimal volume and class distribution for a deep-learning model. Various amounts of data volume and class distributions were tried to establish deep-learning models. The training of deep-learning models uniformly used no-code platform Neuro-T. Accuracy was the primary outcome on four-class prediction. Results: The highest internal-test classification accuracy in the original dataset, doubled dataset, and tripled dataset was commonly shown by doubling the proportion of data for fewer categories (2:2:1:1 for advanced colorectal cancer: early cancers/high-grade dysplasia: tubular adenoma: non-neoplasm). Doubling the proportion of data for fewer categories in the original dataset showed the highest accuracy (86.4%, 95% confidence interval: 85.0–97.8%) compared to that of the doubled or tripled dataset. The total required number of images in this performance was only 2418 images. Gradient-weighted class activation mapping confirmed that the part that the deep-learning model pays attention to coincides with the part that the endoscopist pays attention to. Conclusion: As a result of a data-volume-dependent performance plateau in the classification model of colonoscopy, a dataset that has been doubled or tripled is not always beneficial to training. Deep-learning models would be more accurate if the proportion of fewer category lesions was increased.
Collapse
Affiliation(s)
- Eun Jeong Gong
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea
| | - Chang Seok Bang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea
- Correspondence: ; Tel.: +82-33-240-5821; Fax: +82-33-241-8064
| | - Jae Jun Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea
- Department of Anesthesiology and Pain Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea
| | - Young Joo Yang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea
| | - Gwang Ho Baik
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea
| |
Collapse
|
12
|
Chetcuti Zammit S, Sidhu R. Artificial intelligence within the small bowel: are we lagging behind? Curr Opin Gastroenterol 2022; 38:307-317. [PMID: 35645023 DOI: 10.1097/mog.0000000000000827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
PURPOSE OF REVIEW The use of artificial intelligence in small bowel capsule endoscopy is expanding. This review focusses on the use of artificial intelligence for small bowel pathology compared with human data and developments to date. RECENT FINDINGS The diagnosis and management of small bowel disease has been revolutionized with the advent of capsule endoscopy. Reading of capsule endoscopy videos however is time consuming with an average reading time of 40 min. Furthermore, the fatigued human eye may miss subtle lesions including indiscreet mucosal bulges. In recent years, artificial intelligence has made significant progress in the field of medicine including gastroenterology. Machine learning has enabled feature extraction and in combination with deep neural networks, image classification has now materialized for routine endoscopy for the clinician. SUMMARY Artificial intelligence is in built within the Navicam-Ankon capsule endoscopy reading system. This development will no doubt expand to other capsule endoscopy platforms and capsule endoscopies that are used to visualize other parts of the gastrointestinal tract as a standard. This wireless and patient friendly technique combined with rapid reading platforms with the help of artificial intelligence will become an attractive and viable choice to alter how patients are investigated in the future.
Collapse
Affiliation(s)
| | - Reena Sidhu
- Academic Department of Gastroenterology, Royal Hallamshire Hospital
- Academic Unit of Gastroenterology, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
13
|
Kim HJ, Gong EJ, Bang CS, Lee JJ, Suk KT, Baik GH. Computer-Aided Diagnosis of Gastrointestinal Protruded Lesions Using Wireless Capsule Endoscopy: A Systematic Review and Diagnostic Test Accuracy Meta-Analysis. J Pers Med 2022; 12:jpm12040644. [PMID: 35455760 PMCID: PMC9029411 DOI: 10.3390/jpm12040644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Wireless capsule endoscopy allows the identification of small intestinal protruded lesions, such as polyps, tumors, or venous structures. However, reading wireless capsule endoscopy images or movies is time-consuming, and minute lesions are easy to miss. Computer-aided diagnosis (CAD) has been applied to improve the efficacy of the reading process of wireless capsule endoscopy images or movies. However, there are no studies that systematically determine the performance of CAD models in diagnosing gastrointestinal protruded lesions. Objective: The aim of this study was to evaluate the diagnostic performance of CAD models for gastrointestinal protruded lesions using wireless capsule endoscopic images. Methods: Core databases were searched for studies based on CAD models for the diagnosis of gastrointestinal protruded lesions using wireless capsule endoscopy, and data on diagnostic performance were presented. A systematic review and diagnostic test accuracy meta-analysis were performed. Results: Twelve studies were included. The pooled area under the curve, sensitivity, specificity, and diagnostic odds ratio of CAD models for the diagnosis of protruded lesions were 0.95 (95% confidence interval, 0.93–0.97), 0.89 (0.84–0.92), 0.91 (0.86–0.94), and 74 (43–126), respectively. Subgroup analyses showed robust results. Meta-regression found no source of heterogeneity. Publication bias was not detected. Conclusion: CAD models showed high performance for the optical diagnosis of gastrointestinal protruded lesions based on wireless capsule endoscopy.
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea; (H.J.K.); (E.J.G.); (K.T.S.); (G.H.B.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24253, Korea
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea;
| | - Eun Jeong Gong
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea; (H.J.K.); (E.J.G.); (K.T.S.); (G.H.B.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24253, Korea
| | - Chang Seok Bang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea; (H.J.K.); (E.J.G.); (K.T.S.); (G.H.B.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24253, Korea
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea;
- Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Korea
- Correspondence: ; Tel.: +82-33-240-5821; Fax: +82-33-241-8064
| | - Jae Jun Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea;
- Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Korea
- Department of Anesthesiology and Pain Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea
| | - Ki Tae Suk
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea; (H.J.K.); (E.J.G.); (K.T.S.); (G.H.B.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24253, Korea
| | - Gwang Ho Baik
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea; (H.J.K.); (E.J.G.); (K.T.S.); (G.H.B.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24253, Korea
| |
Collapse
|
14
|
Bang CS, Lee JJ, Baik GH. Computer-Aided Diagnosis of Gastrointestinal Ulcer and Hemorrhage Using Wireless Capsule Endoscopy: Systematic Review and Diagnostic Test Accuracy Meta-analysis. J Med Internet Res 2021; 23:e33267. [PMID: 34904949 PMCID: PMC8715364 DOI: 10.2196/33267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Interpretation of capsule endoscopy images or movies is operator-dependent and time-consuming. As a result, computer-aided diagnosis (CAD) has been applied to enhance the efficacy and accuracy of the review process. Two previous meta-analyses reported the diagnostic performance of CAD models for gastrointestinal ulcers or hemorrhage in capsule endoscopy. However, insufficient systematic reviews have been conducted, which cannot determine the real diagnostic validity of CAD models. OBJECTIVE To evaluate the diagnostic test accuracy of CAD models for gastrointestinal ulcers or hemorrhage using wireless capsule endoscopic images. METHODS We conducted core databases searching for studies based on CAD models for the diagnosis of ulcers or hemorrhage using capsule endoscopy and presenting data on diagnostic performance. Systematic review and diagnostic test accuracy meta-analysis were performed. RESULTS Overall, 39 studies were included. The pooled area under the curve, sensitivity, specificity, and diagnostic odds ratio of CAD models for the diagnosis of ulcers (or erosions) were .97 (95% confidence interval, .95-.98), .93 (.89-.95), .92 (.89-.94), and 138 (79-243), respectively. The pooled area under the curve, sensitivity, specificity, and diagnostic odds ratio of CAD models for the diagnosis of hemorrhage (or angioectasia) were .99 (.98-.99), .96 (.94-0.97), .97 (.95-.99), and 888 (343-2303), respectively. Subgroup analyses showed robust results. Meta-regression showed that published year, number of training images, and target disease (ulcers vs erosions, hemorrhage vs angioectasia) was found to be the source of heterogeneity. No publication bias was detected. CONCLUSIONS CAD models showed high performance for the optical diagnosis of gastrointestinal ulcer and hemorrhage in wireless capsule endoscopy.
Collapse
Affiliation(s)
- Chang Seok Bang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea.,Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea.,Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea.,Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea
| | - Jae Jun Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea.,Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea.,Department of Anesthesiology and Pain Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Gwang Ho Baik
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea.,Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|