1
|
Feli M, Azimi I, Sarhaddi F, Sharifi-Heris Z, Niela-Vilen H, Liljeberg P, Axelin A, Rahmani AM. Preterm birth risk stratification through longitudinal heart rate and HRV monitoring in daily life. Sci Rep 2024; 14:19896. [PMID: 39191907 DOI: 10.1038/s41598-024-70773-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Preterm birth (PTB) remains a global health concern, impacting neonatal mortality and lifelong health consequences. Traditional methods for estimating PTB rely on electronic health records or biomedical signals, limited to short-term assessments in clinical settings. Recent studies have leveraged wearable technologies for in-home maternal health monitoring, offering continuous assessment of maternal autonomic nervous system (ANS) activity and facilitating the exploration of PTB risk. In this paper, we conduct a longitudinal study to assess the risk of PTB by examining maternal ANS activity through heart rate (HR) and heart rate variability (HRV). To achieve this, we collect long-term raw photoplethysmogram (PPG) signals from 58 pregnant women (including seven preterm cases) from gestational weeks 12-15 to three months post-delivery using smartwatches in daily life settings. We employ a PPG processing pipeline to accurately extract HR and HRV, and an autoencoder machine learning model with SHAP analysis to generate explainable abnormality scores indicative of PTB risk. Our results reveal distinctive patterns in PTB abnormality scores during the second pregnancy trimester, indicating the potential for early PTB risk estimation. Moreover, we find that HR, average of interbeat intervals (AVNN), SD1SD2 ratio, and standard deviation of interbeat intervals (SDNN) emerge as significant PTB indicators.
Collapse
Affiliation(s)
- Mohammad Feli
- Department of Computing, University of Turku, Turku, Finland.
| | - Iman Azimi
- Department of Computer Science, University of California, Irvine, USA
| | | | | | | | - Pasi Liljeberg
- Department of Computing, University of Turku, Turku, Finland
| | - Anna Axelin
- Department of Nursing Science, University of Turku, Turku, Finland
| | - Amir M Rahmani
- Department of Computer Science, University of California, Irvine, USA
- School of Nursing, University of California, Irvine, USA
| |
Collapse
|
2
|
Yu QY, Lin Y, Zhou YR, Yang XJ, Hemelaar J. Predicting risk of preterm birth in singleton pregnancies using machine learning algorithms. Front Big Data 2024; 7:1291196. [PMID: 38495848 PMCID: PMC10941650 DOI: 10.3389/fdata.2024.1291196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
We aimed to develop, train, and validate machine learning models for predicting preterm birth (<37 weeks' gestation) in singleton pregnancies at different gestational intervals. Models were developed based on complete data from 22,603 singleton pregnancies from a prospective population-based cohort study that was conducted in 51 midwifery clinics and hospitals in Wenzhou City of China between 2014 and 2016. We applied Catboost, Random Forest, Stacked Model, Deep Neural Networks (DNN), and Support Vector Machine (SVM) algorithms, as well as logistic regression, to conduct feature selection and predictive modeling. Feature selection was implemented based on permutation-based feature importance lists derived from the machine learning models including all features, using a balanced training data set. To develop prediction models, the top 10%, 25%, and 50% most important predictive features were selected. Prediction models were developed with the training data set with 5-fold cross-validation for internal validation. Model performance was assessed using area under the receiver operating curve (AUC) values. The CatBoost-based prediction model after 26 weeks' gestation performed best with an AUC value of 0.70 (0.67, 0.73), accuracy of 0.81, sensitivity of 0.47, and specificity of 0.83. Number of antenatal care visits before 24 weeks' gestation, aspartate aminotransferase level at registration, symphysis fundal height, maternal weight, abdominal circumference, and blood pressure emerged as strong predictors after 26 completed weeks. The application of machine learning on pregnancy surveillance data is a promising approach to predict preterm birth and we identified several modifiable antenatal predictors.
Collapse
Affiliation(s)
- Qiu-Yan Yu
- National Perinatal Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Ying Lin
- Wenzhou Women and Children Health Guidance Center, Wenzhou, China
| | - Yu-Run Zhou
- Wenzhou Women and Children Health Guidance Center, Wenzhou, China
| | - Xin-Jun Yang
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Joris Hemelaar
- National Perinatal Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Medjedovic E, Stanojevic M, Jonuzovic-Prosic S, Ribic E, Begic Z, Cerovac A, Badnjevic A. Artificial intelligence as a new answer to old challenges in maternal-fetal medicine and obstetrics. Technol Health Care 2024; 32:1273-1287. [PMID: 38073356 DOI: 10.3233/thc-231482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
BACKGROUND Following the latest trends in the development of artificial intelligence (AI), the possibility of processing an immense amount of data has created a breakthrough in the medical field. Practitioners can now utilize AI tools to advance diagnostic protocols and improve patient care. OBJECTIVE The aim of this article is to present the importance and modalities of AI in maternal-fetal medicine and obstetrics and its usefulness in daily clinical work and decision-making process. METHODS A comprehensive literature review was performed by searching PubMed for articles published from inception up until August 2023, including the search terms "artificial intelligence in obstetrics", "maternal-fetal medicine", and "machine learning" combined through Boolean operators. In addition, references lists of identified articles were further reviewed for inclusion. RESULTS According to recent research, AI has demonstrated remarkable potential in improving the accuracy and timeliness of diagnoses in maternal-fetal medicine and obstetrics, e.g., advancing perinatal ultrasound technique, monitoring fetal heart rate during labor, or predicting mode of delivery. The combination of AI and obstetric ultrasound can help optimize fetal ultrasound assessment by reducing examination time and improving diagnostic accuracy while reducing physician workload. CONCLUSION The integration of AI in maternal-fetal medicine and obstetrics has the potential to significantly improve patient outcomes, enhance healthcare efficiency, and individualized care plans. As technology evolves, AI algorithms are likely to become even more sophisticated. However, the successful implementation of AI in maternal-fetal medicine and obstetrics needs to address challenges related to interpretability and reliability.
Collapse
Affiliation(s)
- Edin Medjedovic
- Clinic of Gynecology and Obstetrics, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
- Department of Gynecology, Obstetrics and Reproductive Medicine, School of Medicine, Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| | - Milan Stanojevic
- Department of Obstetrics and Gynecology, University Hospital "Sveti Duh", Zagreb, Croatia
| | - Sabaheta Jonuzovic-Prosic
- Clinic of Gynecology and Obstetrics, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Emina Ribic
- Public Institution Department for Health Care of Women and Maternity of Sarajevo Canton, Sarajevo, Bosnia and Herzegovina
| | - Zijo Begic
- Department of Cardiology, Pediatric Clinic, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Anis Cerovac
- Department of Gynecology and Obstetrics Tesanj, General Hospital Tesanj, Bosnia and Herzegovina
| | - Almir Badnjevic
- International Burch University, Sarajevo, Bosnia and Herzegovina
- Genetics and Bioengineering Department, Faculty of Engineering and Natural Sciences, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
4
|
Mennickent D, Rodríguez A, Opazo MC, Riedel CA, Castro E, Eriz-Salinas A, Appel-Rubio J, Aguayo C, Damiano AE, Guzmán-Gutiérrez E, Araya J. Machine learning applied in maternal and fetal health: a narrative review focused on pregnancy diseases and complications. Front Endocrinol (Lausanne) 2023; 14:1130139. [PMID: 37274341 PMCID: PMC10235786 DOI: 10.3389/fendo.2023.1130139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Machine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple variables simultaneously. By means of pattern recognition, ML methods are able to find hidden correlations and accomplish accurate predictions regarding different conditions. ML has been successfully used to solve varied problems in different areas of science, such as psychology, economics, biology and chemistry. Therefore, we wondered how far it has penetrated into the field of obstetrics and gynecology. Aim To describe the state of art regarding the use of ML in the context of pregnancy diseases and complications. Methodology Publications were searched in PubMed, Web of Science and Google Scholar. Seven subjects of interest were considered: gestational diabetes mellitus, preeclampsia, perinatal death, spontaneous abortion, preterm birth, cesarean section, and fetal malformations. Current state ML has been widely applied in all the included subjects. Its uses are varied, the most common being the prediction of perinatal disorders. Other ML applications include (but are not restricted to) biomarker discovery, risk estimation, correlation assessment, pharmacological treatment prediction, drug screening, data acquisition and data extraction. Most of the reviewed articles were published in the last five years. The most employed ML methods in the field are non-linear. Except for logistic regression, linear methods are rarely used. Future challenges To improve data recording, storage and update in medical and research settings from different realities. To develop more accurate and understandable ML models using data from cutting-edge instruments. To carry out validation and impact analysis studies of currently existing high-accuracy ML models. Conclusion The use of ML in pregnancy diseases and complications is quite recent, and has increased over the last few years. The applications are varied and point not only to the diagnosis, but also to the management, treatment, and pathophysiological understanding of perinatal alterations. Facing the challenges that come with working with different types of data, the handling of increasingly large amounts of information, the development of emerging technologies, and the need of translational studies, it is expected that the use of ML continue growing in the field of obstetrics and gynecology.
Collapse
Affiliation(s)
- Daniela Mennickent
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
- Machine Learning Applied in Biomedicine (MLAB), Concepción, Chile
| | - Andrés Rodríguez
- Machine Learning Applied in Biomedicine (MLAB), Concepción, Chile
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán, Chile
| | - Ma. Cecilia Opazo
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Erica Castro
- Departamento de Obstetricia y Puericultura, Facultad de Ciencias de la Salud, Universidad de Atacama, Copiapó, Chile
| | - Alma Eriz-Salinas
- Departamento de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Javiera Appel-Rubio
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Claudio Aguayo
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Alicia E. Damiano
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO-Houssay)- CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Enrique Guzmán-Gutiérrez
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
- Machine Learning Applied in Biomedicine (MLAB), Concepción, Chile
| | - Juan Araya
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
- Machine Learning Applied in Biomedicine (MLAB), Concepción, Chile
| |
Collapse
|