Abstract
Ambulatory monitoring is increasingly important for cardiovascular care but is often limited by the unpredictability of cardiovascular events, the intermittent nature of ambulatory monitors and the variable clinical significance of recorded data in patients. Technological advances in computing have led to the introduction of novel physiological biosignals that can increase the frequency at which abnormalities in cardiovascular parameters can be detected, making expert-level, automated diagnosis a reality. However, use of these biosignals for diagnosis also raises numerous concerns related to accuracy and actionability within clinical guidelines, in addition to medico-legal and ethical issues. Analytical methods such as machine learning can potentially increase the accuracy and improve the actionability of device-based diagnoses. Coupled with interoperability of data to widen access to all stakeholders, seamless connectivity (an internet of things) and maintenance of anonymity, this approach could ultimately facilitate near-real-time diagnosis and therapy. These tools are increasingly recognized by regulatory agencies and professional medical societies, but several technical and ethical issues remain. In this Review, we describe the current state of cardiovascular monitoring along the continuum from biosignal acquisition to the identification of novel biosensors and the development of analytical techniques and ultimately to regulatory and ethical issues. Furthermore, we outline new paradigms for cardiovascular monitoring.
Advances in cardiovascular monitoring technologies have resulted in an influx of consumer-targeted wearable sensors that have the potential to detect numerous heart conditions. In this Review, Krittanawong and colleagues describe processes involved in biosignal acquisition and analysis of cardiovascular monitors, as well as their associated ethical, regulatory and legal challenges.
Advances in the use of cardiovascular monitoring technologies, such as the development of novel portable sensors and machine learning algorithms that can provide near-real-time diagnosis, have the potential to provide personalized care.
Wearable sensor technologies can detect numerous biosignals, such as cardiac output, blood-pressure levels and heart rhythm, and can integrate multiple modalities.
The use of novel biosignals for diagnosis raises concerns regarding accuracy and actionability within clinical guidelines, in addition to medical, legal and ethical issues.
Machine learning-based interpretation of biosensor data can facilitate rapid evaluation of the haemodynamic consequences of heart failure or arrhythmias, but is limited by the presence of noise and training data that might not be representative of the real-world clinical setting.
The use of data derived from cardiovascular monitoring devices is associated with numerous challenges, such as data security, accessibility and ownership, in addition to other ethical and regulatory concerns.
Collapse