1
|
Zhen Y, Pavez M, Li X. The role of Pcdh10 in neurological disease and cancer. J Cancer Res Clin Oncol 2023; 149:8153-8164. [PMID: 37058252 PMCID: PMC10374755 DOI: 10.1007/s00432-023-04743-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Protocadherin 10 (PCDH 10), a member of the superfamily of protocadherins, is a Ca2+-dependent homophilic cell-cell adhesion molecule expressed on the surface of cell membranes. Protocadherin 10 plays a critical role in the central nervous system including in cell adhesion, formation and maintenance of neural circuits and synapses, regulation of actin assembly, cognitive function and tumor suppression. Additionally, Pcdh10 can serve as a non-invasive diagnostic and prognostic indicator for various cancers. METHODS This paper collects and reviews relevant literature in Pubmed. CONCLUSION This review describes the latest research understanding the role of Pcdh10 in neurological disease and human cancer, highlighting the importance of scrutinizing its properties for the development of targeted therapies and identifying a need for further research to explore Pcdh10 functions in other pathways, cell types and human pathologies.
Collapse
Affiliation(s)
- Yilan Zhen
- Menzies Institute for Medical Research, University of Tasmania, Liverpool street, Hobart, 7000, Australia
| | - Macarena Pavez
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand.
| | - Xinying Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
- School of Life Sciences, Anhui Medical University, Hefei, People's Republic of China.
| |
Collapse
|
2
|
Darang E, Pezeshkian Z, Mirhoseini SZ, Ghovvati S. Bioinformatics and pathway enrichment analysis identified hub genes and potential biomarker for gastric cancer prognosis. Front Oncol 2023; 13:1187521. [PMID: 37361568 PMCID: PMC10288990 DOI: 10.3389/fonc.2023.1187521] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Gastric cancer is one of the most common cancers in the world. This study aimed to identify genes, biomarkers, and metabolic pathways affecting gastric cancer using bioinformatic analysis and meta-analysis. Methods Datasets containing gene expression profiles of tumor lesions and adjacent non-tumor mucosa samples were downloaded. Common differentially expressed genes between data sets were selected to identify hub genes and further analysis. Gene Expression Profiling and Interactive Analyses (GEPIA) and the Kaplan-Meier method were used to further validate the expression level of genes and plot the overall survivalcurve, respectively. Results and disscussion KEGG pathway analysis showed that the most important pathway was enriched in ECM-receptor interaction. Hub genes includingCOL1A2, FN1, BGN, THBS2, COL5A2, COL6A3, SPARC and COL12A1 wereidentified. The top interactive miRNAs including miR-29a-3p, miR-101-3p,miR-183-5p, and miR-15a-5p targeted the most hub genes. The survival chart showed an increase in mortality in patients with gastric cancer, which shows the importance of the role of these genes in the development of the disease and can be considered candidate genes in the prevention and early diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Elham Darang
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, Guilan, Iran
| | - Zahra Pezeshkian
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, Guilan, Iran
- Research and Development Center (R&D), BioGenTAC Inc., Rasht, Guilan, Iran
| | | | - Shahrokh Ghovvati
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, Guilan, Iran
| |
Collapse
|
3
|
Zang Y, Li H, Liu S, Zhao R, Zhang K, Zang Y, Wang Y, Xue F. The roles and clinical applications of interleukins in endometrial carcinoma. Front Oncol 2022; 12:1001693. [PMID: 36531027 PMCID: PMC9748080 DOI: 10.3389/fonc.2022.1001693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2023] Open
Abstract
As a common malignant tumor of the female reproductive system, endometrial carcinoma (EC) seriously endangers women's health with an increasing incidence. The oncogenesis and progression of cancer are closely linked with immune microenvironment, of which interleukins are the important components. In order to illustrate the roles and clinical applications of interleukins in EC, literature of interleukins and EC were reviewed. Based on the present studies, interleukins play crucial roles in the oncogenesis and development of EC via regulating the proliferation, migration, invasion, angiogenesis, apoptosis, pyroptosis and autophagy of EC as well as the immune function against EC. And some of the interleukins seems to have prospective clinical applications in EC, such as evaluating the risk of tumorigenesis, discriminating the malignancy from benign disorders or normal condition, indicating cancer aggressiveness, predicting the prognosis of patients and serving as the novel therapy. However, there is still a long way to go before the clinical applications of interleukins in EC come into reality. Nevertheless, it is certain that the exploration of interleukins will definitely be of great benefit to the screening, diagnosis and treatment of EC in the future.
Collapse
Affiliation(s)
- Yuqin Zang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huanrong Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiqi Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruqian Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaiwen Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuqi Zang
- Hangzhou College of Preschool Teacher Education, Zhejiang Normal University, Hangzhou, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Dobroch J, Bojczuk K, Kołakowski A, Baczewska M, Knapp P. The Exploration of Chemokines Importance in the Pathogenesis and Development of Endometrial Cancer. Molecules 2022; 27:2041. [PMID: 35408440 PMCID: PMC9000631 DOI: 10.3390/molecules27072041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 01/10/2023] Open
Abstract
Endometrial cancer (EC) is one of the most frequent female malignancies. Because of a characteristic symptom, vaginal bleeding, EC is often diagnosed in an early stage. Despite that, some EC cases present an atypical course with rapid progression and poor prognosis. There have been multiple studies conducted on molecular profiling of EC in order to improve diagnostics and introduce personalized treatment. Chemokines-a protein family that contributes to inflammatory processes that may promote carcinogenesis-constitute an area of interest. Some chemokines and their receptors present alterations in expression in tumor microenvironment. CXCL12, which binds the receptors CXCR4 and CXCR7, is known for its impact on neoplastic cell proliferation, neovascularization and promotion of epidermal-mesenchymal transition. The CCL2-CCR2 axis additionally plays a pivotal role in EC with mutations in the LKB1 gene and activates tumor-associated macrophages. CCL20 and CCR6 are influenced by the RANK/RANKL pathway and alter the function of lymphocytes and dendritic cells. Another axis, CXCL10-CXCR3, affects the function of NK-cells and, interestingly, presents different roles in various types of tumors. This review article consists of analysis of studies that included the roles of the aforementioned chemokines in EC pathogenesis. Alterations in chemokine expression are described, and possible applications of drugs targeting chemokines are reviewed.
Collapse
Affiliation(s)
- Jakub Dobroch
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
- University Oncology Center, University Clinical Hospital in Bialystok, 15-276 Bialystok, Poland
| | - Klaudia Bojczuk
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
| | - Adrian Kołakowski
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
| | - Marta Baczewska
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
- University Oncology Center, University Clinical Hospital in Bialystok, 15-276 Bialystok, Poland
| | - Paweł Knapp
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
- University Oncology Center, University Clinical Hospital in Bialystok, 15-276 Bialystok, Poland
| |
Collapse
|
5
|
Ton TVT, Kovi RC, Peddada TN, Chhabria RM, Shockley KR, Flagler ND, Gerrish KE, Herbert RA, Behl M, Hoenerhoff MJ, Sills RC, Pandiri AR. Cobalt-induced oxidative stress contributes to alveolar/bronchiolar carcinogenesis in B6C3F1/N mice. Arch Toxicol 2021; 95:3171-3190. [PMID: 34468815 DOI: 10.1007/s00204-021-03146-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 08/19/2021] [Indexed: 12/19/2022]
Abstract
Rodent alveolar/bronchiolar carcinomas (ABC) that arise either spontaneously or due to chemical exposure are similar to a subtype of lung adenocarcinomas in humans. B6C3F1/N mice and F344/NTac rats exposed to cobalt metal dust (CMD) by inhalation developed ABCs in a dose dependent manner. In CMD-exposed mice, the incidence of Kras mutations in ABCs was 67% with 80% of those being G to T transversions on codon 12 suggesting a role of oxidative stress in the pathogenesis. In vitro studies, such as DMPO (5,5-dimethyl-1-pyrroline N-oxide) immune-spin trapping assay, and dihydroethidium (DHE) fluorescence assay on A549 and BEAS-2B cells demonstrated increased oxidative stress due to cobalt exposure. In addition, significantly increased 8-oxo-dG adducts were demonstrated by immunohistochemistry in lungs from mice exposed to CMD for 90 days. Furthermore, transcriptomic analysis on ABCs arising spontaneously or due to chronic CMD-exposure demonstrated significant alterations in canonical pathways related to MAPK signaling (IL-8, ErbB, Integrin, and PAK pathway) and oxidative stress (PI3K/AKT and Melatonin pathway) in ABCs from CMD-exposed mice. Oxidative stress can stimulate PI3K/AKT and MAPK signaling pathways. Nox4 was significantly upregulated only in CMD-exposed ABCs and NOX4 activation of PI3K/AKT can lead to increased ROS levels in human cancer cells. The gene encoding Ereg was markedly up-regulated in CMD-exposed mice. Oncogenic KRAS mutations have been shown to induce EREG overexpression. Collectively, all these data suggest that oxidative stress plays a significant role in CMD-induced pulmonary carcinogenesis in rodents and these findings may also be relevant in the context of human lung cancers.
Collapse
Affiliation(s)
- Thai-Vu T Ton
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Ramesh C Kovi
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.,Experimental Pathology Laboratories Inc., Research Triangle Park, NC, 27709, USA.,Drug Safety Research and Development, Pfizer Inc., Cambridge, MA, USA
| | - Teja N Peddada
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.,National Institute of Mental Health, Bethesda, MD, 20892, USA
| | - Raveena M Chhabria
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.,Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Keith R Shockley
- Biostatistics and Computational Biology Branch, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Norris D Flagler
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Kevin E Gerrish
- Molecular Genomics Core Laboratory, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Ronald A Herbert
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Mamta Behl
- Toxicology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Mark J Hoenerhoff
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.,In Vivo Animal Core, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert C Sills
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Arun R Pandiri
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
6
|
Wang A, Guo H, Long Z. Integrative Analysis of Differently Expressed Genes Reveals a 17-Gene Prognosis Signature for Endometrial Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4804694. [PMID: 34337010 PMCID: PMC8298166 DOI: 10.1155/2021/4804694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 12/19/2022]
Abstract
Endometrial carcinoma (EC) is the fifth widely occurring malignant neoplasm among women all over the world. However, there is still lacking efficacy indicators for EC's prognosis. Here, we analyzed two databases including an RNA-sequencing-based TCGA dataset and a microarray-based GSE106191. After normalizing the raw data, we identified 114 common genes with upregulation and 308 common genes with downregulation in both the TCGA and GSE106191 databases. Bioinformatics analysis showed that the differently expressed genes in EC were related to the IL17 signaling pathway, PI3K-Akt signaling pathway, and cGMP-PKG signaling pathway. Furthermore, we performed the least absolute shrinkage and selection operator (LASSO) Cox regression analysis and generated a signature featuring 17 prognosis-related genes (MAL2, ANKRD22, METTL7B, IL32, ERFE, OAS1, TRPC1, SRPX, RAPGEF4, PSD3, SIMC1, TRPC6, WFS1, PGR, PAMR1, KCNK6, and FAM189A2) and found that it could predict OS in EC patients. The further analysis showed that OAS1, MAL2, ANKRD22, METTL7B, and IL32 were significantly upregulated in EC samples after comparison with normal samples. However, TRPC1, SRPX, RAPGEF4, PSD3, SIMC1, TRPC6, WFS1, PGR, PAMR1, KCNK6, and FAM189A2 were significantly downregulated in EC samples in comparison with normal samples. And correlation analysis showed that our results showed that the expressions of 17 prognosis-related hub genes were significantly correlated based on Pearson correlation. We here offer a newly genetic biomarker for the prediction of EC patients' prognosis.
Collapse
Affiliation(s)
- Anna Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Liaoning, China
| | - Hongyan Guo
- Department of Information Engineering, Shenyang Polytechnic College, Liaoning, China
| | - Zaiqiu Long
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Liaoning, China
| |
Collapse
|
7
|
Zhang R, Zhou X, Jin Y, Chang C, Wang R, Liu J, Fan J, He D. Identification of differential key biomarkers in the synovial tissue between rheumatoid arthritis and osteoarthritis using bioinformatics analysis. Clin Rheumatol 2021; 40:5103-5110. [PMID: 34224029 DOI: 10.1007/s10067-021-05825-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/03/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION/OBJECTIVES Rheumatoid arthritis (RA) and osteoarthritis (OA) are two common joint diseases with similar clinical manifestations. Our study aimed to identify differential gene biomarkers in the synovial tissue between RA and OA using bioinformatics analysis and validation. METHOD GSE36700, GSE1919, GSE12021, GSE55235, GSE55584, and GSE55457 datasets were downloaded from the Gene Expression Omnibus database. A total of 57 RA samples and 46 OA samples were included. The differentially expressed genes (DEGs) were identified. The Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were also performed. Protein-protein interaction (PPI) network of DEGs and the hub genes were constructed and visualized via Search Tool for the Retrieval of Interacting Genes/Proteins, Cytoscape, and R. Selected hub genes were validated via reverse transcription-polymerase chain reaction. RESULTS A total of 41 DEGs were identified. GO functional enrichment analysis showed that DEGs were enriched in immune response, signal transduction, regulation of immune response for biological process, in plasma membrane and extracellular region for cell component, and antigen binding and serine-type endopeptidase activity for molecular function. KEGG pathway analysis showed that DEGs were enriched in cytokine-cytokine receptor interaction and chemokine signaling pathway. PPI network analysis established 70 nodes and 120 edges and 15 hub genes were identified. The expression of CXCL13, CXCL10, and ADIPOQ was statistically different between RA and OA synovial tissue. CONCLUSION Differential expression of CXCL13, CXCL10, and ADIPOQ between RA and OA synovial tissue may provide new insights for understanding the RA development and difference between RA and OA. Key Points • Bioinformatics analysis was used to identify the differentially expressed genes in the synovial tissue between rheumatoid arthritis and osteoarthritis. • CXCL13, CXCL10, and ADIPOQ might provide new insight for understanding the differences between RA and OA.
Collapse
Affiliation(s)
- Runrun Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, China.,Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200052, China
| | - Xinpeng Zhou
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Yehua Jin
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, China.,Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200052, China
| | - Cen Chang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, China.,Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200052, China
| | - Rongsheng Wang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200052, China
| | - Jia Liu
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200052, China
| | - Junyu Fan
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200052, China
| | - Dongyi He
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, China. .,Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200052, China. .,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200052, China.
| |
Collapse
|
8
|
Liu L, Song Z, Gao XD, Chen X, Wu XB, Wang M, Hong YD. Identification of the potential novel biomarkers as susceptibility gene for Wilms tumor. BMC Cancer 2021; 21:316. [PMID: 33765954 PMCID: PMC7992941 DOI: 10.1186/s12885-021-08034-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background Wilms tumor (WT) is the most common malignant renal tumor in children. The aim of this study was to identify potential susceptibility gene of WT for better prognosis. Methods Weighted gene coexpression network analysis is used for the detection of clinically important biomarkers associated with WT. Results In the study, 59 tissue samples from National Cancer Institute were pretreated for constructing gene co-expression network, while 224 samples also downloaded from National Cancer Institute were used for hub gene validation and module preservation analysis. Three modules were found to be highly correlated with WT, and 44 top hub genes were identified in these key modules eventually. In addition, both the module preservation analysis and gene validation showed ideal results based on other dataset with 224 samples. Meanwhile, Functional enrichment analysis showed that genes in module were enriched to sister chromatid cohesion, cell cycle, oocyte meiosis. Conclusion In summary, we established a gene co-expression network to identify 44 hub genes are closely to recurrence and staging of WT, and 6 of these hub genes was closely related to the poor prognosis of patients. Our findings revealed that those hub genes may be used as potential susceptibility gene for clinical diagnosis and prognosis of this tumor. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08034-w.
Collapse
Affiliation(s)
- Li Liu
- Department of Urology, The Second Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhe Song
- Department of Urology, The Second Hospital, University of South China, Hengyang, 421001, Hunan, China.
| | - Xu-Dong Gao
- College of Health Science and Nursing, Wuhan Polytechnic University, Wuhan, 420000, China
| | - Xian Chen
- Department of Urology, The Second Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Xiao-Bin Wu
- Department of Urology, The Second Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Mi Wang
- Department of Urology, The Second Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Yu-De Hong
- Department of Urology, The Second Hospital, University of South China, Hengyang, 421001, Hunan, China
| |
Collapse
|
9
|
Cabral de Carvalho Corrêa D, Dias Oliveira I, Mascaro Cordeiro B, Silva FA, de Seixas Alves MT, Saba-Silva N, Capellano AM, Dastoli P, Cavalheiro S, Caminada de Toledo SR. Abnormal spindle-like microcephaly-associated (ASPM) gene expression in posterior fossa brain tumors of childhood and adolescence. Childs Nerv Syst 2021; 37:137-145. [PMID: 32591873 DOI: 10.1007/s00381-020-04740-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE In neurogenesis, ASPM (abnormal spindle-like microcephaly-associated) gene is expressed mainly in the ventricular zone of posterior fossa and is the major determinant in the cerebral cortex. Besides its role in embryonic development, ASPM overexpression promotes tumor growth, including central nervous system (CNS) tumors. This study aims to investigate ASPM expression levels in most frequent posterior fossa brain tumors of childhood and adolescence: medulloblastoma (MB), ependymoma (EPN), and astrocytoma (AS), correlating them with clinicopathological characteristics and tumor solid portion size. METHODS Quantitative reverse transcription (qRT-PCR) is used to quantify ASPM mRNA levels in 80 pre-treatment tumor samples: 28 MB, 22 EPN, and 30 AS. The tumor solid portion size was determined by IOP-GRAACC Diagnostic Imaging Center. We correlated these findings with clinicopathological characteristics and tumor solid portion size. RESULTS Our results demonstrated that ASPM gene was overexpressed in MB (p = 0.007) and EPN (p = 0.0260) samples. ASPM high expression was significantly associated to MB samples from patients with worse overall survival (p = 0.0123) and death due to disease progression (p = 0.0039). Interestingly, two patients with AS progressed toward higher grade showed ASPM overexpression (p = 0.0046). No correlation was found between the tumor solid portion size and ASPM expression levels in MB (p = 0.1154 and r = - 0.4825) and EPN (p = 0.1108 and r = - 0.3495) samples. CONCLUSION Taking in account that ASPM gene has several functions to support cell proliferation, as mitotic defects and premature differentiation, we suggest that its overexpression, presumably, plays a critical role in disease progression of posterior fossa brain tumors of childhood and adolescence.
Collapse
Affiliation(s)
- Débora Cabral de Carvalho Corrêa
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil.,Department of Morphology and Genetics, Division of Genetics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Indhira Dias Oliveira
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Bruna Mascaro Cordeiro
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Frederico Adolfo Silva
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil.,Department of Imaging Diagnosis, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Maria Teresa de Seixas Alves
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil.,Department of Pathology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Nasjla Saba-Silva
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Andrea Maria Capellano
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Patrícia Dastoli
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Sergio Cavalheiro
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil.,Department of Neurology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Silvia Regina Caminada de Toledo
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil. .,Department of Morphology and Genetics, Division of Genetics, Federal University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Zhang J, Liu X, Zhou W, Cheng G, Wu J, Guo S, Jia S, Liu Y, Li B, Zhang X, Wang M. A bioinformatics investigation into molecular mechanism of Yinzhihuang granules for treating hepatitis B by network pharmacology and molecular docking verification. Sci Rep 2020; 10:11448. [PMID: 32651427 PMCID: PMC7351787 DOI: 10.1038/s41598-020-68224-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Yinzhihuang granules (YZHG) is a patented Chinese medicine for the treatment of hepatitis B. This study aimed to investigate the intrinsic mechanisms of YZHG in the treatment of hepatitis B and to provide new evidence and insights for its clinical application. The chemical compounds of YZHG were searched in the CNKI and PUBMED databases, and their putative targets were then predicted through a search of the SuperPred and Swiss Target Prediction databases. In addition, the targets of hepatitis B were obtained from TTD, PharmGKB and DisGeNET. The abovementioned data were visualized using Cytoscape 3.7.1, and network construction identified a total of 13 potential targets of YZHG in the treatment of hepatitis B. Molecular docking verification showed that CDK6, CDK2, TP53 and BRCA1 might be strongly correlated with hepatitis B treatment. Furthermore, GO and KEGG analyses indicated that the treatment of hepatitis B by YZHG might be related to positive regulation of transcription, positive regulation of gene expression, the hepatitis B pathway and the viral carcinogenesis pathway. Network pharmacology intuitively shows the multicomponent, multitarget and multichannel pharmacological effects of YZHG in the treatment of hepatitis B and provides a scientific basis for its mechanism of action.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Xinkui Liu
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Wei Zhou
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Guoliang Cheng
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, 276000, China
| | - Jiarui Wu
- Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Siyu Guo
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Shanshan Jia
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yingying Liu
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Bingbing Li
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, 276000, China
| | - Xiaomeng Zhang
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Miaomiao Wang
- Beijing University of Chinese Medicine, Beijing, 100102, China
| |
Collapse
|
11
|
Tian J, Xue W, Yin H, Zhang N, Zhou J, Long Z, Wu C, Liang Z, Xie K, Li S, Li L, Wu Z, Daria V, Zhao Y, Wang F, Wang M. Differential Metabolic Alterations and Biomarkers Between Gastric Cancer and Colorectal Cancer: A Systematic Review and Meta-Analysis. Onco Targets Ther 2020; 13:6093-6108. [PMID: 32612370 PMCID: PMC7323803 DOI: 10.2147/ott.s247393] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose Numerous metabolomics studies have been conducted to detect the metabolic mechanisms and biomarkers related to gastric cancer and colorectal cancer. Because of the common metabolic features between gastric cancer and colorectal cancer, a differential diagnosis is difficult. Here, we performed a systematic review and meta-analysis to identify differential metabolic biomarkers between these two types of cancers. Materials and Methods PubMed, Embase, and ScienceDirect were searched to identify all metabolomics studies of gastric cancer and colorectal cancer published up to September 2018. Differential metabolites or altered pathways were extracted. The intersections and differences for these metabolites and pathways between gastric cancer and colorectal cancer were compared. Candidate biomarker sets for diagnosis were proposed from biofluid or feces by comparing them with tumor tissues. Results Totally, 24 and 65 studies were included in gastric cancer and colorectal cancer, and 223 and 472 differential metabolites were extracted, respectively. Eight pathways were reproducibly enriched in blood, tissue and urine in gastric cancer, while, 11 pathways were reproducibly enriched in blood, urine, feces and tissue in colorectal cancer. Candidate metabolic biomarker sets in blood, urine, or feces for these two cancers were proposed. We found 27 pathways (categorized into eight classifications) common to both cancers, five pathways involving 35 metabolites enriched only in gastric cancer, and eight pathways involving 54 metabolites enriched only in colorectal cancer. Conclusion The altered metabolic pathways showed signatures of abnormal metabolism in gastric cancer and colorectal cancer; the potential metabolic biomarkers proposed in this study have important implications for the prospective validation of gastric cancer and colorectal cancer.
Collapse
Affiliation(s)
- Jingshen Tian
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Weinan Xue
- Department of Colorectal Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Huihui Yin
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Nannan Zhang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Junde Zhou
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zhiping Long
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Chengwei Wu
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zhengzi Liang
- Department of Colorectal Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People's Republic of China
| | - Kun Xie
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Shuo Li
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Liangliang Li
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zhen Wu
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Volontovich Daria
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yashuang Zhao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Fan Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Maoqing Wang
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| |
Collapse
|
12
|
Shi S, Tan Q, Feng F, Huang H, Liang J, Cao D, Wang Z. Identification of core genes in the progression of endometrial cancer and cancer cell-derived exosomes by an integrative analysis. Sci Rep 2020; 10:9862. [PMID: 32555395 PMCID: PMC7299953 DOI: 10.1038/s41598-020-66872-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Endometrial cancer is one of the most prevalent tumors of the female reproductive system causing serious health effects to women worldwide. Although numerous studies, including analysis of gene expression profile and cellular microenvironment have been reported in this field, pathogenesis of this disease remains unclear. In this study, we performed a system bioinformatics analysis of endometrial cancer using the Gene Expression Omnibus (GEO) datasets (GSE17025, GSE63678, and GSE115810) to identify the core genes. In addition, exosomes derived from endometrial cancer cells were also isolated and identified. First, we analyzed the differentially expressed genes (DEGs) between endometrial cancer tissues and normal tissues in clinic samples. We found that HAND2-AS1, PEG3, OGN, SFRP4, and OSR2 were co-expressed across all 3 datasets. Pathways analysis showed that several pathways associated with endometrial cancer, including "p53 signaling pathway", "Glutathione metabolism", "Cell cycle", and etc. Next, we selected DEGs with highly significant fold change and co-expressed across the 3 datasets and validated them in the TCGA database using Gene Expression Profiling Interactive Analysis (GEPIA). Finally, we performed a survival analysis and identified four genes (TOP2A, ASPM, EFEMP1, and FOXL2) that play key roles in endometrial cancer. We found up-regulation of TOP2A and ASPM in endometrial cancer tissues or cells, while EFEMP1 and FOXL2 were down-regulated. Furthermore, we isolated exosomes from the culturing supernatants of endometrial cancer cells (Ishikawa and HEC-1-A) and found that miR-133a, which regulates expression of FOXL2, were present in exosomes and that they could be delivered to normal endometrial cells. The common DEGs, pathways, and exosomal miRNAs identified in this study might play an important role in progression as well as diagnosis of endometrial cancer. In conclusion, our results provide insights into the pathogenesis and risk assessment of endometrial cancer. Even so, further studies are required to elucidate on the precise mechanism of action of these genes in endometrial cancer.
Collapse
Affiliation(s)
- Shuang Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Qiang Tan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China.
| | - Fuqiang Feng
- Agricultural Economic Service Center of Wuzhen Town, Tongxiang, Zhejiang, P. R. China
| | - Heping Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Jingjie Liang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Dingren Cao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Zhengguang Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China.
| |
Collapse
|
13
|
Zhou JW, Wang H, Sun W, Han NN, Chen L. ASPM is a predictor of overall survival and has therapeutic potential in endometrial cancer. Am J Transl Res 2020; 12:1942-1953. [PMID: 32509189 PMCID: PMC7270042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Endometrial carcinoma (EC) is one of the most common cancers in women, and its pathogenesis is complex. Abnormal spindle microtubule assembly (ASPM) is highly expressed in a variety of cancers and is related to poor clinical prognosis and recurrence. However, the role of ASPM in EC is still unclear. Our study was conducted to investigate the association of ASPM with tumour progression and prognosis in EC. METHODS The expression level of ASPM in EC patients was analysed by using the TCGA database and by using immunohistochemistry (IHC) to analyse EC patient samples. The relationship between ASPM expression and clinicopathological variables was analysed by the chi-square test. Survival curves were analysed by Kaplan-Meier survival analysis and log-rank test. Univariate and multivariate Cox regression analyses were performed to measure the prognosis of EC. The effects of ASPM on the proliferation, invasion and metastasis of EC cells (HEC-1A and Ishikawa) were analysed by MTT and Transwell assays. The effect of ASPM on the Wnt/β-catenin signalling pathway was detected by Western blotting. RESULTS ASPM was highly overexpressed in EC. Overexpression of ASPM was related to significantly worse overall survival (P<0.05) in EC patients. Univariate and multivariate Cox regression analyses suggested that upregulation of ASPM was related to poor prognosis in EC. Knockdown of ASPM inhibited the proliferation, migration and invasion of EC cells. ASPM knockdown suppressed the Wnt/β-catenin signalling pathway, while β-catenin overexpression reversed the effect of shASPM on cell activity. CONCLUSIONS ASPM acts as an independent predictor of clinical prognosis and serves as a potential target gene for EC therapy.
Collapse
Affiliation(s)
- Jing-Wei Zhou
- Department of Gynaecology, Jiangsu Province Hospital Nanjing 210000, P. R. China
| | - Hui Wang
- Department of Gynaecology, Jiangsu Province Hospital Nanjing 210000, P. R. China
| | - Wei Sun
- Department of Gynaecology, Jiangsu Province Hospital Nanjing 210000, P. R. China
| | - Nan-Nan Han
- Department of Gynaecology, Jiangsu Province Hospital Nanjing 210000, P. R. China
| | - Liang Chen
- Department of Gynaecology, Jiangsu Province Hospital Nanjing 210000, P. R. China
| |
Collapse
|
14
|
Lv S, Xu X, Wu Z. Identification of key candidate genes and pathways in endometrial cancer: Evidence from bioinformatics analysis. Oncol Lett 2019; 18:6679-6689. [PMID: 31807178 PMCID: PMC6876294 DOI: 10.3892/ol.2019.11040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/24/2019] [Indexed: 01/03/2023] Open
Abstract
Endometrial cancer (EC) is the fourth most common cancer in women worldwide. Although researchers are exploring the biological processes of tumorigenesis and development of EC, the gene interactions and biological pathways of EC are not accurately verified. In the present study, bioinformatics methods were used to screen for key candidate genes and pathways that were associated with EC and to reveal the possible mechanisms at molecular level. Microarray datasets (GSE63678, GSE17025 and GSE3013) from the Gene Expression Omnibus database were downloaded and 118 differentially expressed genes (DEGs) were selected using a Venn diagram. Functional enrichment analyses were performed on the DEGs. A protein-protein interaction network was constructed, including the module analysis. A total of 11 hub genes were identified from the DEGs, and functional enrichment analyses were performed to clarify their possible biological processes. A total of 118 DEGs were selected from three mRNA datasets. Functional enrichment demonstrated 27 downregulated genes that were primarily involved in the positive regulation of transcription from RNA polymerase II promoter, protein binding and the nucleus. A total of 91 upregulated DEGs were mainly associated with cell division, protein binding and the nucleus. Pathway analysis indicated that the downregulated DEGs were mainly enriched in pathways associated with cancer, and the upregulated DEGs were mainly enriched in the cell cycle. The 11 hub genes were primarily enriched in the cell cycle, oocyte meiosis, progesterone-mediated oocyte maturation, the p53 signaling pathway and viral carcinogenesis. The integrated analysis showed that cyclin B1, ubiquitin conjugating enzyme E2 C and cell division cycle 20 may participate in the tumorigenesis, development and invasion of EC. In conclusion, the hub genes and pathways identified in the present study contributed to the understanding of carcinogenesis and progression of EC at the mechanistic and molecular-biological level. As candidate targets for the diagnosis and treatment of EC, these genes deserve further investigation.
Collapse
Affiliation(s)
- Sha Lv
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Xiaoxiao Xu
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Zhangying Wu
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| |
Collapse
|
15
|
Gowkielewicz M, Lipka A, Piotrowska A, Szadurska-Noga M, Nowakowski JJ, Dzięgiel P, Majewski MK, Jozwik M, Majewska M. Anti-Müllerian Hormone Expression in Endometrial Cancer Tissue. Int J Mol Sci 2019; 20:ijms20061325. [PMID: 30884769 PMCID: PMC6471522 DOI: 10.3390/ijms20061325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/29/2022] Open
Abstract
Anti-Müllerian hormone (AMH) is a commonly known factor secreted by Sertoli cells, responsible for regression of the Müllerian ducts in male fetuses. AMH has also other functions in humans. In vivo and in vitro studies have shown that AMH inhibits cell cycle and induces apoptosis in cancers with AMH receptors. The aim of the study was to assess whether the tissue of pre-cancerous states of endometrium (PCS) and various histopathologic types of endometrial cancer (EC) exhibit the presence of AMH. We aimed to investigate whether the potential presence of the protein concerns menopausal women or those regularly menstruating, and whether is related to cancers with a good or a bad prognosis, as well as what other factors may influence AMH expression. The undertaken analysis was carried out on tissues retrieved from 232 women who underwent surgical treatment for PCS and EC. Tissues were prepared for immunohistochemical assessment with the use of a tissue microarrays method. AMH expression was confirmed in 23 patients with well differentiated endometrioid adenocarcinoma (G1), moderately differentiated endometrioid adenocarcinoma (G2), clear cell carcinoma (CCA) and nonatypical hyperplasia. AMH was not found in EC tissues in regularly menstruating women. An appropriately long mean period of breastfeeding in line with a prolonged period of hormonal activity had a positive effect on AMH expression. Our results may suggest that AMH is a factor which protects the organism against cancer, and should be further investigated as a potential prognosis marker and a therapeutic agent.
Collapse
Affiliation(s)
- Marek Gowkielewicz
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland.
| | - Aleksandra Lipka
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland.
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland.
| | - Marta Szadurska-Noga
- Department of Pathomorphology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-561 Olsztyn, Poland.
| | - Jacek J Nowakowski
- Department of Ecology & Environmental Protection, University of Warmia and Mazury in Olsztyn, 10⁻727 Olsztyn, Poland.
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland.
- Department of Physiotherapy, Wroclaw University School of Physical Education, 51-612 Wroclaw, Poland.
| | - Mariusz Krzysztof Majewski
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| | - Marcin Jozwik
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland.
| | - Marta Majewska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| |
Collapse
|