1
|
Liang T, Wei C, Lu S, Qin M, Qin G, Zhang Y, Zhong X, Zou X, Yang Y. Ginaton injection alleviates cisplatin-induced renal interstitial fibrosis in rats via inhibition of apoptosis through regulation of the p38MAPK/TGF-β1 and p38MAPK/HIF-1α pathways. Biomed Rep 2021; 14:38. [PMID: 33692901 PMCID: PMC7938297 DOI: 10.3892/br.2021.1414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/04/2021] [Indexed: 11/06/2022] Open
Abstract
Ginaton injection (Ginkgo biloba extract; GBE) has been reported to protect against cisplatin-induced acute renal failure in rats. In the present study, the effects and molecular mechanisms of GBE on cisplatin-induced renal interstitial fibrosis were evaluated using a rat model. The rats were intraperitoneally injected with cisplatin once on the first day and a subset of rats were treated with GBE or SB203580 (SB; a specific p38 MAPK inhibitor) daily from days 22 to 40. The levels of N-acetyl-β-D-Glucosaminidase (NAG) in the urine, and of urea nitrogen (BUN) and creatinine (Scr) in the blood were assessed. The damage and fibrosis of renal tissues were evaluated using hematoxylin and eosin staining, as well as Masson's trichrome staining, respectively. Apoptosis in renal tissues was detected using a TUNEL assay. The protein expression levels of α-smooth muscle actin (SMA), collagen 1 (Col I), Bax, Bcl-2, caspase-3/cleaved caspase-3, hypoxia-inducible factor-1α (HIF-1α), TGF-β1 and p38MAPK, as well as the mRNA levels of p38MAPK in renal tissues were investigated. The results showed that GBE markedly reduced the levels of urinary NAG, Scr and BUN, and renal expression of α-SMA and Col I levels were also reduced. Furthermore, GBE significantly reduced renal tissue injury and the relative area of renal interstitial fibrosis induced by cisplatin. GBE effectively reduced the apoptotic rate of renal tissues, the protein expression levels of Bax, cleaved caspase-3, phospho-p38MAPK, TGF-β1 and HIF-1α, as well as the mRNA expression levels of p38MAPK in renal tissues induced by cisplatin, whereas GBE significantly increased Bcl-2 protein expression. SB exhibited similar effects to GBE, although it was not as effective. In summary, the present study is the first to show that GBE significantly alleviated renal interstitial fibrosis following cisplatin-induced acute renal injury. The mechanisms by which GBE exhibited its effects were associated with the inhibition of apoptosis via downregulation of the p38MAPK/TGF-β1 and p38MAPK/HIF-1α signaling pathways.
Collapse
Affiliation(s)
- Taolin Liang
- Postgraduate Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chongying Wei
- Postgraduate Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Sisi Lu
- Postgraduate Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Mengyuan Qin
- Postgraduate Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guiming Qin
- Postgraduate Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yansong Zhang
- Postgraduate Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaobin Zhong
- Regenerative Medicine Research Center of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoqin Zou
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yufang Yang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
2
|
Feng E, Wang J, Wang X, Wang Z, Chen X, Zhu X, Hou W. Inhibition of HMGB1 Might Enhance the Protective Effect of Taxifolin in Cardiomyocytes via PI3K/AKT Signaling Pathway. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:316-332. [PMID: 34567165 PMCID: PMC8457741 DOI: 10.22037/ijpr.2020.113584.14384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cardiovascular diseases (CVD) affect millions of people and spend a lot of medical costs around the world each year. Taxifolin is a natural anti-oxidative reagent obtained from multiple plants and exhibits a wide range of pharmacological effects. High mobility group box protein 1 (HMGB1) is expressed in multiple types of cells in the extracellular environment, regulating the pro-inflammatory process. Here, we detected the viability of cells using MTT assay, and the expression of each target protein was detected using western blotting analysis. The expression of each target mRNA was detected using the qPCR method, and the concentration of each cytokine in serum samples was detected using the ELISA method. In this study, we found that taxifolin could decrease the expression of hypoxia-inducible factor-1α (HIF-1α) while increasing the expression of endothelial nitric oxide synthase (eNOS), presented a protective role. Besides, taxifolin could also increase the expression of vascular endothelial growth factor-α (VEGF-α), transforming growth factor-β (TGF-β) and fibroblast growth factor21 (FGF21), resulting in viability rate increasing. And these effects were mediated by phosphatidylinositol 3-hydroxy kinase (PI3K)/AKT/mTOR signaling pathway; a similar trend was also observed in HMGB1 knockdown mice. We also found that inhibition of HMGB1 could enhance the cardioprotective effect of taxifolin and might be a new therapeutic strategy for cardiovascular disease.
Collapse
Affiliation(s)
- Erjun Feng
- Department of Cardiology, Fourth Center Hospital of Tianjin, Tianjin, China, 300000.
- E. F. and J. W. and X. W. contributed equally to this work.
| | - Jian Wang
- Department of Cardiology, Fourth Center Hospital of Tianjin, Tianjin, China, 300000.
- E. F. and J. W. and X. W. contributed equally to this work.
| | - Xinwei Wang
- Oncology Department of Characteristic Medical Center of PAF, Tianjin, China, 300162.
- E. F. and J. W. and X. W. contributed equally to this work.
| | - Zhenguo Wang
- Medical Research Department of Characteristic Medical Center of PAF, Tianjin, China, 300162.
| | - Xiaochu Chen
- Medical Research Department of Characteristic Medical Center of PAF, Tianjin, China, 300162.
| | - Xu Zhu
- Second Department of Neurology, Central Hospital of Handan, Handan, China, 056000.
| | - Wenli Hou
- Cadre Ward of Characteristic Medical Center of PAF, Tianjin, China, 300162.
| |
Collapse
|
3
|
Feodorova Y, Tomova T, Minchev D, Turiyski V, Draganov M, Argirova M. Cytotoxic effect of Ginkgo biloba kernel extract on HCT116 and A2058 cancer cell lines. Heliyon 2020; 6:e04941. [PMID: 33005784 PMCID: PMC7509470 DOI: 10.1016/j.heliyon.2020.e04941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
While the pharmacology of Ginkgo biloba leaf extract has been studied extensively, little is known about the pharmacological potential of Ginkgo biloba seeds, although they contain similar active ingredients that are responsible for the therapeutic effects of the leaf extract. In this study we used 70%-methanol Ginkgo biloba kernel extract, quantified its bioactive constituents and tested their cytotoxic effect on two cancer cell lines, A2058 and HCT116, and the non-tumor cell line McCoy-Plovdiv. We studied the biological effect of the extract by real-time analysis in the xCELLigence system, WST-1 assay and LIVE/DEAD viability assay. We show that the extract significantly perturbed the viability of cancer cells in a concentration- and time-dependent manner. In contrast, non-cancerous McCoy-Plovdiv cells sustained their proliferation potential even at high concentrations of the extract. Therefore, we propose that the active constituents of the Ginkgo biloba endosperm extract may interact additively or synergistically to protect against cancer.
Collapse
Affiliation(s)
- Yana Feodorova
- Department of Medical Biology, Faculty of Medicine, Medical University of Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria.,Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria
| | - Teodora Tomova
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria
| | - Danail Minchev
- Department of Medical Biology, Faculty of Medicine, Medical University of Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria.,Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria
| | - Valentin Turiyski
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria
| | - Marian Draganov
- Department of Medical Biology, Faculty of Medicine, Medical University of Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria
| | - Mariana Argirova
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria
| |
Collapse
|