1
|
Hridayanka KSN, Duttaroy AK, Basak S. Bioactive Compounds and Their Chondroprotective Effects for Osteoarthritis Amelioration: A Focus on Nanotherapeutic Strategies, Epigenetic Modifications, and Gut Microbiota. Nutrients 2024; 16:3587. [PMID: 39519419 PMCID: PMC11547880 DOI: 10.3390/nu16213587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
In degenerative joint disease like osteoarthritis (OA), bioactive compounds like resveratrol, epigallocatechin gallate, curcumin, and other polyphenols often target various signalling pathways, including NFκB, TGFβ, and Wnt/β-catenin by executing epigenetic-modifying activities. Epigenetic modulation can target genes of disease pathophysiology via histone modification, promoter DNA methylation, and non-coding RNA expression, some of which are directly involved in OA but have been less explored. OA patients often seek options that can improve the quality of their life in addition to existing treatment with nonsteroidal anti-inflammatory drugs (NSAIDs). Although bioactive and natural compounds exhibit therapeutic potential against OA, several disadvantages loom, like insolubility and poor bioavailability. Nanoformulated bioactive compounds promise a better way to alleviate OA since they also control systemic events, including metabolic, immunological, and inflammatory responses, by modulating host gut microbiota that can regulate OA pathogenesis. Recent data suggest gut dysbiosis in OA. However, limited evidence is available on the role of bioactive compounds as epigenetic and gut modulators in ameliorating OA. Moreover, it is not known whether the effects of polyphenolic bioactive compounds on gut microbial response are mediated by epigenetic modulatory activities in OA. This narrative review highlights the nanotherapeutic strategies utilizing bioactive compounds, reporting their effects on chondrocyte growth, metabolism, and epigenetic modifications in osteoarthritis amelioration.
Collapse
Affiliation(s)
- Kota Sri Naga Hridayanka
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India;
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway;
| | - Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India;
| |
Collapse
|
2
|
Ghosh PK, Ghosh A. Dysregulation of noncoding RNA in chordoma; implications in identifying potential targets for novel therapeutic approaches. Mol Biol Rep 2024; 51:125. [PMID: 38236360 DOI: 10.1007/s11033-023-09017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/23/2023] [Indexed: 01/19/2024]
Abstract
Chordoma is a rare form of bone cancer develops in the spinal cord and skull. Instead of conventional (radio/chemotherapies) and targeted therapies, the disease is associated with high rate of recurrence and poor patient survival. Thus, for better disease management, the molecular pathogenesis of chordoma should be studied in detail to identify dysregulated biomolecules that can be targeted by novel therapeutics. Recent research showed frequent dysregulation of long noncoding RNA (lncRNA), microRNA (miRNA), and circular RNA (circRNA) in association with aggressive tumor phenotypes like cell proliferation, migration, invasion, and metastasis in a variety of cancers, including chordoma. Apart from diagnostic and prognostic importance, noncoding RNAs may serve as promising targets for novel therapeutics in cancer. In this review, we summarized a list of miRNAs, lncRNAs, and circRNA found to be dysregulated in chordoma from available data published in relevant databases (PubMed), as such an approach seems to be rare to date. The dysregulated noncoding RNAs were also associated with adverse tumor phenotypes to assess the impact on disease pathogenesis and, associated downstream molecular pathways were focused. Synthetic compounds and natural products that were reported to target the noncoding RNAs in other malignancies were also listed from published literature and proposed as potential therapeutic agents in chordoma. This review will provide information for further research on chordoma focusing on detailed characterization of dysregulated lncRNAs, miRNAs, and circRNA to understand the disease pathogenesis and, exploration of suitable natural and synthetic products targeting dysregulated non-coding RNAs to develop effective therapeutic measures.
Collapse
Affiliation(s)
- Pramit Kumar Ghosh
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Amlan Ghosh
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India.
- Genetics of Non-communicable Diseases, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
3
|
Kunnumakkara AB, Hegde M, Parama D, Girisa S, Kumar A, Daimary UD, Garodia P, Yenisetti SC, Oommen OV, Aggarwal BB. Role of Turmeric and Curcumin in Prevention and Treatment of Chronic Diseases: Lessons Learned from Clinical Trials. ACS Pharmacol Transl Sci 2023; 6:447-518. [PMID: 37082752 PMCID: PMC10111629 DOI: 10.1021/acsptsci.2c00012] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 03/08/2023]
Abstract
Turmeric (Curcuma longa) has been used for thousands of years for the prevention and treatment of various chronic diseases. Curcumin is just one of >200 ingredients in turmeric. Almost 7000 scientific papers on turmeric and almost 20,000 on curcumin have been published in PubMed. Scientific reports based on cell culture or animal studies are often not reproducible in humans. Therefore, human clinical trials are the best indicators for the prevention and treatment of a disease using a given agent/drug. Herein, we conducted an extensive literature survey on PubMed and Scopus following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The keywords "turmeric and clinical trials" and "curcumin and clinical trials" were considered for data mining. A total of 148 references were found to be relevant for the key term "turmeric and clinical trials", of which 70 were common in both PubMed and Scopus, 44 were unique to PubMed, and 34 were unique to Scopus. Similarly, for the search term "curcumin and clinical trials", 440 references were found to be relevant, of which 70 were unique to PubMed, 110 were unique to Scopus, and 260 were common to both databases. These studies show that the golden spice has enormous health and medicinal benefits for humans. This Review will extract and summarize the lessons learned about turmeric and curcumin in the prevention and treatment of chronic diseases based on clinical trials.
Collapse
Affiliation(s)
- Ajaikumar B. Kunnumakkara
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Mangala Hegde
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Dey Parama
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Sosmitha Girisa
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Aviral Kumar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Uzini Devi Daimary
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Prachi Garodia
- Integrative
Research Center, Miami, Florida 33125, United States
| | - Sarat Chandra Yenisetti
- Department
of Zoology, Drosophila Neurobiology Laboratory, Nagaland University (Central), Lumami, Nagaland-798627, India
| | - Oommen V. Oommen
- Department
of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala-695581, India
| | - Bharat B. Aggarwal
- Inflammation
Research Center, San Diego, California 92109, United States
| |
Collapse
|
4
|
Hegde M, Girisa S, BharathwajChetty B, Vishwa R, Kunnumakkara AB. Curcumin Formulations for Better Bioavailability: What We Learned from Clinical Trials Thus Far? ACS OMEGA 2023; 8:10713-10746. [PMID: 37008131 PMCID: PMC10061533 DOI: 10.1021/acsomega.2c07326] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 05/30/2023]
Abstract
Curcumin has been credited with a wide spectrum of pharmacological properties for the prevention and treatment of several chronic diseases such as arthritis, autoimmune diseases, cancer, cardiovascular diseases, diabetes, hemoglobinopathies, hypertension, infectious diseases, inflammation, metabolic syndrome, neurological diseases, obesity, and skin diseases. However, due to its weak solubility and bioavailability, it has limited potential as an oral medication. Numerous factors including low water solubility, poor intestinal permeability, instability at alkaline pH, and fast metabolism contribute to curcumin's limited oral bioavailability. In order to improve its oral bioavailability, different formulation techniques such as coadministration with piperine, incorporation into micelles, micro/nanoemulsions, nanoparticles, liposomes, solid dispersions, spray drying, and noncovalent complex formation with galactomannosides have been investigated with in vitro cell culture models, in vivo animal models, and humans. In the current study, we extensively reviewed clinical trials on various generations of curcumin formulations and their safety and efficacy in the treatment of many diseases. We also summarized the dose, duration, and mechanism of action of these formulations. We have also critically reviewed the advantages and limitations of each of these formulations compared to various placebo and/or available standard care therapies for these ailments. The highlighted integrative concept embodied in the development of next-generation formulations helps to minimize bioavailability and safety issues with least or no adverse side effects and the provisional new dimensions presented in this direction may add value in the prevention and cure of complex chronic diseases.
Collapse
|
5
|
Shojaei M, Sahebkar A, Khorvash F, Fallahpour S, Askari G, Bagherniya M. The effects of phytosomal curcumin supplementation on clinical symptoms, and inflammatory and oxidative stress biomarkers in patients with migraine: A protocol for a randomized double-blind placebo-controlled trial. AVICENNA JOURNAL OF PHYTOMEDICINE 2023; 13:45-57. [PMID: 36698737 PMCID: PMC9840775 DOI: 10.22038/ajp.2022.21242] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023]
Abstract
Objective Migraine is one of the most common diseases. Curcumin with anti-oxidative and anti-neuroinflammatory properties might have beneficial effects in migraine patients. This study will be conducted to evaluate the effects of a phytosomal preparation of curcumin on clinical signs, oxidative stress, and inflammatory parameters in patients with migraine. Materials and Methods This is a randomized, double-blind, placebo-controlled, clinical trial in which, 60 patients with migraine will be assigned to receive a daily dose of 250 mg of phytosomal curcumin for 8 weeks (intervention group) or 250 mg maltodextrin as a placebo for the same duration (control group). Before and after the study, frequency, duration, and severity of the attacks, quality of life and sleep, mood status, high-sensitivity C-reactive protein (hs-CRP), Nitric Oxide (NO), and oxidative stress factors will be measured. Conclusion It seems that phytosomal formulation of curcumin (a solid dispersion preparation of curcumin with phosphatidylserine) with high bioavailability, can cross the blood-brain barrier (BBB) and result in decreased neuroinflammation, oxidative stress, and neurotoxicity. This way, phytosomal curcumin might lead to reduction of headaches and other complications of migraine and increase the quality of life of patients with migraine.
Collapse
Affiliation(s)
- Mehrnaz Shojaei
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariborz Khorvash
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Soheil Fallahpour
- Department of Neurosurgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|