1
|
Boroughani M, Moaveni AK, Hatami P, Mansoob Abasi N, Seyedoshohadaei SA, Pooladi A, Moradi Y, Rahimi Darehbagh R. Nanocurcumin in cancer treatment: a comprehensive systematic review. Discov Oncol 2024; 15:515. [PMID: 39349709 PMCID: PMC11442806 DOI: 10.1007/s12672-024-01272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/24/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Curcumin, a compound in turmeric, shows potential in cancer treatment but is hindered by low bioavailability and solubility. Nanocurcumin, enhanced through nanotechnology, addresses these limitations, offering potential in oncological applications. This review systematically examines the efficacy, bioavailability, and safety of nanocurcumin in cancer treatment, collating data from in vitro, in vivo, and clinical studies. METHODS A comprehensive systematic search was conducted across four major databases: PubMed (Medline), Scopus, Web of Science, and Embase (up to February 2024). The selection criteria were based on the PICOT structure, and studies were assessed for risk of bias using the Cochrane bias risk tool for clinical studies and related checklists for in vitro and in vivo studies. Statistical analyses were performed in STATA software version 17. RESULTS In total, 8403 articles were identified and assessed, and then only 61 articles were found eligible to be included. Nanocurcumin formulations, especially with Poly (lactic-co-glycolic acid) (PLGA), displayed superior solubility and therapeutic efficacy. In vitro studies highlighted its enhanced cellular uptake and anti-proliferative effects, particularly against cervical cancer cells. In vivo studies confirmed its chemopreventive efficacy and potential synergy with other cancer therapies. Though in early stages, clinical trials showed promise in reducing side effects and improving efficacy in cancer treatments. CONCLUSION Nanocurcumin shows promise as an innovative approach in cancer therapy, potentially offering improved efficacy and reduced side effects compared to traditional treatments. Early clinical trials indicate its potential to enhance the quality of life for cancer patients by mitigating treatment-related toxicities and improving therapeutic outcomes. However, larger randomized controlled trials are necessary to definitively establish its clinical efficacy, optimal dosing regimens, and long-term safety profile across various cancer types. As research progresses, nanocurcumin could become a valuable addition to the oncologist's toolkit, particularly in combination therapies or for patients intolerant to conventional treatments. Future clinical studies should focus on optimizing treatment protocols, identifying responsive patient populations, and assessing long-term outcomes to facilitate the translation of these promising findings into standard clinical practice.
Collapse
Affiliation(s)
- Meshkat Boroughani
- Nanoclub Elites Association, Tehran, Iran
- Student Research Committee, Factually of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Kian Moaveni
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parsa Hatami
- Student Research Committee, Kurdistan University of Medical Sciences, P.O.Box: 66135-756, Sanandaj, Iran
| | - Neda Mansoob Abasi
- Student Research Committee, Kurdistan University of Medical Sciences, P.O.Box: 66135-756, Sanandaj, Iran
| | - Seyedeh Asrin Seyedoshohadaei
- Department of Psychiatry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Neurosciences Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Arash Pooladi
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Medical Genetics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Yousef Moradi
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ramyar Rahimi Darehbagh
- Student Research Committee, Kurdistan University of Medical Sciences, P.O.Box: 66135-756, Sanandaj, Iran.
- Nanoclub Elites Association, Tehran, Iran.
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
- Universal Scientific Education and Research Network (USERN), Sanandaj, Kurdistan, Iran.
| |
Collapse
|
2
|
Eslami SS, Jafari D, Ghotaslou A, Amoupour M, Asri Kojabad A, Jafari R, Mousazadeh N, Tarighi P, Sadeghizadeh M. Combined Treatment of Dendrosomal-Curcumin and Daunorubicin Synergistically Inhibit Cell Proliferation, Migration and Induce Apoptosis in A549 Lung Cancer Cells. Adv Pharm Bull 2023; 13:539-550. [PMID: 37646049 PMCID: PMC10460814 DOI: 10.34172/apb.2023.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Purpose Chemotherapy drugs used to treat lung cancer are associated with drug resistance and severe side effects. There have been rising demands for new therapeutic candidates and novel approaches, including combination therapy. Here, we aimed to investigate the combinatorial effect of a dendrosomal formulation of curcumin (DNC) and daunorubicin (DNR) on the A549 lung cancer cell line. Methods We performed cytotoxicity, apoptosis, cell migration, colony-formation capacity, and gene expression analysis to interpret the mechanism of action for a combination of DNC and DNR on A549 cells. Results Our results revealed that the combination of DNC and DNR could synergistically inhibit the A549 cells' growth. This synergistic cytotoxicity was further approved by flow cytometry, migration assessment, colony-forming capacity and gene expression analysis. DNR combination with DNC resulted in increased apoptosis to necrosis ratio compared to DNR alone. In addition, the migration and colony-forming capacity were at the minimal range when DNC was combined with DNR. Combined treatment decreased the expression level of MDR-1, hTERT and Bcl-2 genes significantly. In addition, the ratio of Bax/Bcl2 gene expression significantly increased. Our analysis by free curcumin, dendrosomes and DNC also showed that dendrosomes do not have any significant cytotoxic effect on the A549 cells, suggesting that this carrier has a high potential for enhancing the curcumin's biological effects. Conclusion Our observations suggest that the DNC formulation of curcumin synergistically enhances the antineoplastic effect of DNR on the A549 cell line through the modulation of apoptosis/necrosis ratio, as well as Bax/Bcl2 ratio, MDR-1 and hTERT gene expression.
Collapse
Affiliation(s)
- Seyed Sadegh Eslami
- Student Research Committee, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davod Jafari
- Student Research Committee, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Ghotaslou
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Amoupour
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Asri Kojabad
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Rasool Jafari
- Department of Medical Parasitology and Mycology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Navid Mousazadeh
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
The theranostic potentialities of bioavailable nanocurcumin in oral cancer management. BMC Complement Med Ther 2022; 22:309. [PMID: 36424593 PMCID: PMC9685877 DOI: 10.1186/s12906-022-03770-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Oral cancer, one of the most common cancers, has unimproved 5-years survival rate in the last 30 years and the chemo/radiotherapy-associated morbidity. Therefore, intervention strategies that evade harmful side effects of the conventional treatment modalities are of need. Herbal therapy as a complementary preventive/therapeutic modality has gained attention. Curcumin is one of the herbal compounds possessing unique anticancer activity and luminescent optical properties. However, its low water solubility limits its efficacy. In contrast, curcumin at the nanoscale shows altered physical properties with enhancing bioavailability. METHODS The current study evaluated the impact of nanocurcumin as an anti-oral cancer herbal remedy, comparing its efficacy against the native curcumin complement and conventional chemotherapeutic. An optimized polymeric-stabilized nanocurcumin was synthesized using the solvent-antisolvent precipitation technique. After assuring the solubility and biocompatibility of nanocurcumin, we determined its cytotoxic dose in treating the squamous cell carcinoma cell line. We then evaluated the anti-tumorigenic activity of the nano-herb in inhibiting wound closure and the cytological alterations of the treated cancer cells. Furthermore, the cellular uptake of the nanocurcumin was assessed depending on its autofluorescence. RESULTS The hydrophilic optimized nanocurcumin has a potent cancerous cytotoxicity at a lower dose (60.8 µg/mL) than the native curcumin particles (212.4 µg/mL) that precipitated on high doses hindering their cellular uptake. Moreover, the nanocurcumin showed differential targeting of the cancer cells over the normal fibroblasts with a selectivity index of 4.5. With the confocal microscopy, the luminescent nanoparticles showed gradual nuclear and cytoplasmic uptake with apparent apoptotic cell death, over the fluorescent doxorubicin with its necrotic effect. Furthermore, the nanocurcumin superiorly inhibited the migration of cancer cells by -25%. CONCLUSIONS The bioavailable nanocurcumin has better apoptotic cytotoxicity. Moreover, its superior luminescence promotes the theranostic potentialities of the nano-herb combating oral cancer.
Collapse
|
4
|
Vahedian Sadeghi R, Parsania M, Sadeghizadeh M, Haghighat S. Investigation of Curcumin-Loaded OA400 Nanoparticle's Effect on the Expression of E6 and E7 Human Papilloma-Virus Oncogenes and P53 and Rb Factors in HeLa Cell Line. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e130762. [PMID: 36710992 PMCID: PMC9872547 DOI: 10.5812/ijpr-130762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022]
Abstract
Background Curcumin, a compound derived from the root of the Curcuma longa, has been confirmed as an anticancer, chemoprotective, and gene/protein regulatory agent. Nanoformulation of curcumin has been developed to increase its targeting efficiency, solubility, controlled release, and physical and chemical stability. Objectives This study investigated the effect of new nano-type curcumin, oleic acid-derived dendrosome (OA400 nanoparticles), on the expression of E6 and E7 human papillomavirus oncogenes and P53 and Rb factors in the HeLa cell line. After preparing nano-curcumin by mixing OA400 nano-carrier and curcumin, its effect was considered on the human cervical cancer cell line (HeLa cell line RRID: CVCL_003) and normal fibroblast cells. Methods MTT assay and flow cytometry were used to evaluate cell viability and apoptosis. Furthermore, real-time RT-PCR and western blot analyses assessed RNA and protein expression of E6, E7, P53, and Rb. Statistical analyses were performed by GraphPad Prism 7 software. Results The nanoformulation of curcumin could reduce the expression of E6 and E7 oncogenes and increase P53 and Rb tumor suppressors in HeLa cancerous cells at 15 μM concentration; however, it had no significant effect on the viability of normal fibroblast cells. On the other hand, curcumin altered the expression of these genes at a 50-μM concentration. Gene and protein expression analysis indicated the up-regulation of P53 and Rb factors and the down-regulation of E6 and E7 under the influence of nano-curcumin treatment more than curcumin. Conclusions These data indicate the potential of curcumin-loaded OA400 nanoparticles to be considered as a treatment option in cervical cancer investigations.
Collapse
Affiliation(s)
- Rezvaneh Vahedian Sadeghi
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Masoud Parsania
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Corresponding Author: Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Do XH, Hoang MHT, Vu AT, Nguyen LT, Bui DTT, Dinh DT, Nguyen XH, Than UTT, Mai HT, To TT, Nguyen TNH, Hoang NTM. Differential Cytotoxicity of Curcumin-Loaded Micelles on Human Tumor and Stromal Cells. Int J Mol Sci 2022; 23:ijms232012362. [PMID: 36293215 PMCID: PMC9604151 DOI: 10.3390/ijms232012362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
Although curcumin in the form of nanoparticles has been demonstrated as a potential anti-tumor compound, the impact of curcumin and nanocurcumin in vitro on normal cells and in vivo in animal models is largely unknown. This study evaluated the toxicity of curcumin-loaded micelles in vitro and in vivo on several tumor cell lines, primary stromal cells, and zebrafish embryos. Breast tumor cell line (MCF7) and stromal cells (human umbilical cord vein endothelial cells, human fibroblasts, and human umbilical cord-derived mesenchymal stem cells) were used in this study. A zebrafish embryotoxicity (FET) assay was conducted following the Organisation for Economic Co-operation and Development (OECD) Test 236. Compared to free curcumin, curcumin PM showed higher cytotoxicity to MCF7 cells in both monolayer culture and multicellular tumor spheroids. The curcumin-loaded micelles efficiently penetrated the MCF7 spheroids and induced apoptosis. The nanocurcumin reduced the viability and disturbed the function of stromal cells by suppressing cell migration and tube formation. The micelles demonstrated toxicity to the development of zebrafish embryos. Curcumin-loaded micelles demonstrated toxicity to both tumor and normal primary stromal cells and zebrafish embryos, indicating that the use of nanocurcumin in cancer treatment should be carefully investigated and controlled.
Collapse
Affiliation(s)
- Xuan-Hai Do
- Department of Practical and Experimental Surgery, Vietnam Military Medical University, 160 Phung Hung Street, Phuc La, Ha Dong, Hanoi 10000, Vietnam
| | - My Hanh Thi Hoang
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
| | - Anh-Tuan Vu
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
| | - Lai-Thanh Nguyen
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
| | - Dung Thi Thuy Bui
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
| | - Duy-Thanh Dinh
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
- Laboratory for Organogenesis and Regeneration, GIGA-R, University of Liège, 4000 Liège, Belgium
| | - Xuan-Hung Nguyen
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai Street, Hanoi 10000, Vietnam
- College of Health Sciences, Vin University, Hanoi 10000, Vietnam
| | - Uyen Thi Trang Than
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai Street, Hanoi 10000, Vietnam
| | - Hien Thi Mai
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai Street, Hanoi 10000, Vietnam
| | - Thuy Thanh To
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
| | - Tra Ngoc Huong Nguyen
- Department of Biology, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Nhung Thi My Hoang
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
- Correspondence: ; Tel.: +84-947440249
| |
Collapse
|
6
|
Peter K, Kar SK, Gothalwal R, Gandhi P. Curcumin in Combination with Other Adjunct Therapies for Brain Tumor Treatment: Existing Knowledge and Blueprint for Future Research. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2022; 10:163-181. [PMID: 35178355 PMCID: PMC8800460 DOI: 10.22088/ijmcm.bums.10.3.163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022]
Abstract
Malignant brain tumors proliferate aggressively and have a debilitating outcome. Surgery followed by chemo-radiotherapy has been the standard procedure of care since 2005 but issues of therapeutic toxicity and relapse still remain unaddressed. Repurposing of drugs to develop novel combinations that can augment existing treatment regimens for brain tumors is the need of the hour. Herein, we discuss studies documenting the use of curcumin as an adjuvant to conventional and alternative therapies for brain tumors. Comprehensive analysis of data suggests that curcumin together with available therapies can generate a synergistic action achieved through multiple molecular targeting, which results in simultaneous inhibition of tumor growth, and reduced treatment-induced toxicity as well as resistance. The review also highlights approaches to increase bioavailability and bioaccumulation of drugs when co-delivered with curcumin using nano-cargos. Despite substantial preclinical work on radio-chemo sensitizing effects of curcumin, to date, there is only a single clinical report on brain tumors. Based on available lab evidence, it is proposed that antibody-conjugated nano-curcumin in combination with sub-toxic doses of conventional or repurposed therapeutics should be designed and tested in clinical studies. This will increase tumor targeting, the bioavailability of the drug combination, reduce therapy resistance, and tumor recurrence through modulation of aberrant signaling cascades; thus improving clinical outcomes in brain malignancies.
Collapse
Affiliation(s)
- Kavita Peter
- Department of Biotechnology, Barkatullah University, Bhopal, M.P, India
| | | | - Ragini Gothalwal
- Department of Biotechnology, Barkatullah University, Bhopal, M.P, India
| | - Puneet Gandhi
- Department of Research, Bhopal Memorial Hospital and Research Centre, Bhopal, M.P, India
| |
Collapse
|
7
|
Curcumin and Freshwater Clam Extracts Alleviate the Progression of Osteoarthritis by Reducing Synovial Inflammation and Allowing Cartilage Regeneration. Processes (Basel) 2021. [DOI: 10.3390/pr9060931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative disorder and is accompanied by numerous pain symptoms. With increased age, individuals develop a chronic inflammatory status, and pro-inflammatory cytokines as well as mediators contribute to the progression of OA. However, no desirable remedies have been completely able to inhibit OA progression or safely provide effective symptomatic relief. Natural component extracts or dietary-derived compounds are widely used for anti-inflammatory diseases. Curcumin and freshwater clam extract (FCE) have been proven as functional foods that are able to regulate immune systems. This study demonstrated that curcumin and FCE had synergistic effects on alleviating the progression of OA by assuaging inflammation and repairing the cartilage within the joints. After consumption of curcumin and FCE, the severity of synovitis was quantified by the infrapatellar fat pad inflammation scoring system and the Osteoarthritis Research Society International (OARSI) scoring system. Significant improvement and articular cartilage regeneration were noted. Moreover, once the inflammation within the joints was reduced, the animals redistributed their body weight on the OA-induced hindlimb. In summary, curcumin and FCE possess desirable anti-inflammatory and repair functions, suggesting their potential as alternative remedies in the management of OA or other inflammatory diseases.
Collapse
|
8
|
Panzarini E, Mariano S, Tacconi S, Carata E, Tata AM, Dini L. Novel Therapeutic Delivery of Nanocurcumin in Central Nervous System Related Disorders. NANOMATERIALS 2020; 11:nano11010002. [PMID: 33374979 PMCID: PMC7822042 DOI: 10.3390/nano11010002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Nutraceuticals represent complementary or alternative beneficial products to the expensive and high-tech therapeutic tools in modern medicine. Nowadays, their medical or health benefits in preventing or treating different types of diseases is widely accepted, due to fewer side effects than synthetic drugs, improved bioavailability and long half-life. Among herbal and natural compounds, curcumin is a very attractive herbal supplement considering its multipurpose properties. The potential effects of curcumin on glia cells and its therapeutic and protective properties in central nervous system (CNS)-related disorders is relevant. However, curcumin is unstable and easily degraded or metabolized into other forms posing limits to its clinical development. This is particularly important in brain pathologies determined blood brain barrier (BBB) obstacle. To enhance the stability and bioavailability of curcumin, many studies focused on the design and development of curcumin nanodelivery systems (nanoparticles, micelles, dendrimers, and diverse nanocarriers). These nanoconstructs can increase curcumin stability, solubility, in vivo uptake, bioactivity and safety. Recently, several studies have reported on a curcumin exosome-based delivery system, showing great therapeutical potential. The present work aims to review the current available data in improving bioactivity of curcumin in treatment or prevention of neurological disorders.
Collapse
Affiliation(s)
- Elisa Panzarini
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Stefania Mariano
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Stefano Tacconi
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Elisabetta Carata
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Ada Maria Tata
- Departament of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciana Dini
- Departament of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
- CNR Nanotec, Campus Ecotekne, University of Salento, 73100 Lecce, Italy
- Correspondence:
| |
Collapse
|
9
|
Shariati M, Hajigholami S, Veisi Malekshahi Z, Entezari M, Bodaghabadi N, Sadeghizadeh M. Nanocurcumin-Mediated Down-Regulation of Telomerase Via Stimulating TGFβ1 Signaling Pathway in Hepatocellular Carcinoma Cells. IRANIAN BIOMEDICAL JOURNAL 2018; 22:171-9. [PMID: 28992682 PMCID: PMC5889502 DOI: 10.22034/ibj.22.3.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background Curcumin, extracted from turmeric, represents enormous potential to serve as an anticancer agent. Telomerase is viewed as a prominent molecular target of curcumin, and Transforming growth factor-β1 (TGFβ1) has proven to be a major inhibitory signaling pathway for telomerase activity. In the current study, we aimed to explore suppressive effects of nanocurcumin on telomerase expression through TGFβ1 pathway in a hepatocellular carcinoma cell line (Huh7). Methods MTT assay was used to determine the effect of nonocurcumin on viability of Huh7 cells. RT-PCR was used to analyze the gene expression patterns. Results MTT assay revealed that nanocurcumin acts in a dose- and time-dependent manner to diminish the cell viability.
RT-PCR analysis indicated that nanocurcumin results in augmentation of TGFβ1 72 hours post treatment and leads to the reduction of telomerase expression 48 and 72 hours post exposure. Also, up-regulation of Smad3 and E2F1 and down-regulation of Smad7 confirmed the effect of nanocurcumin on intermediate components of TGFβ1 pathway. Furthermore, transfection of the proximal promoter of telomerase triggered a significant reduction in luciferase activity. Conclusion The data from the present study lead us to develop a deeper understanding of the mechanisms underlying nanocurcumin-mediated regulation of telomerase expression, thereby presenting a new perspective to the landscape of using nanocurcumin as a cancer-oriented therapeutic agent.
Collapse
Affiliation(s)
- Molood Shariati
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Samira Hajigholami
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Department of Biology, Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran
| | - Narges Bodaghabadi
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| |
Collapse
|
10
|
Combination treatment with dendrosomal nanocurcumin and doxorubicin improves anticancer effects on breast cancer cells through modulating CXCR4/NF-κB/Smo regulatory network. Mol Biol Rep 2017; 44:341-351. [PMID: 28752270 DOI: 10.1007/s11033-017-4115-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/23/2017] [Indexed: 02/04/2023]
Abstract
Despite advantageous antitumor properties of doxorubicin, the considerable cytotoxicity of this chemotherapeutic agent has made it necessary to develop combination treatment strategies. The aim of the current study was to investigate the possible synergism between dendrosomal nanocurcumin (DNC) and doxorubicin in eliciting anticancer effects on MDA-MB-231 metastatic breast cancer cells. The expression levels of CXCL12/CXCR4 axis and Hedgehog pathway genes were evaluated in patient-derived breast carcinoma tissues by qRT-PCR. MTT assay, Annexin V-FITC staining followed by flowcytomety and wound healing assay were used to measure the effects caused by DNC and doxorubicin, alone and in combination, on the viability, apoptosis induction, and migration of MDA-MB-231 cells, respectively. Also, qRT-PCR was exploited to analyze the expression of Smo, NF-κB and CXCR4 in cancer cells. Our results revealed that combination treatment with DNC and doxorubicin leads to significantly decreased viability, increased apoptosis, and reduced migration of breast cancer cells compared with using each drug alone. Also, combination treatment is more efficient that single treatment in reducing the expression levels of NF-κB and Smo transcripts. Our findings provide convincing support for the notion that DNC could synergistically enhance the anticancer effects of doxorubicin on metastatic breast cancer cells by improving its anti-proliferative, pro-apoptotic, and anti-migratory activities. This may be mediated, in part, by downregulating CXCR4, NF-κB, and Smo genes. Overall, the findings of the current study suggest that DNC might be used as a synergistic agent for enhancing therapeutic efficiency and reducing toxic effects of doxorubicin on breast cancer cells.
Collapse
|