Afarin R, Ahmadpour F, Hatami M, Monjezi S, Igder S. Combination of Etoposide and quercetin-loaded solid lipid nanoparticles Potentiates apoptotic effects on MDA-MB-231 breast cancer cells.
Heliyon 2024;
10:e31925. [PMID:
38841445 PMCID:
PMC11152947 DOI:
10.1016/j.heliyon.2024.e31925]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
Background
Breast cancer is a major global cancer, for which radiation and chemotherapy are the main treatments. Natural remedies are being studied to reduce the side effects. Etoposide (ETO), a chemo-drug, and quercetin (QC), a phytochemical, are considered potential factors for adaptation to conventional treatments.
Objectives
The anticancer effect of the synergy between ETO and Quercetin-loaded solid lipid nanoparticles (QC-SLNs), was investigated in MDA-MB-231 cells.
Methods
We developed QC-SLNs for efficient cellular delivery, characterizing their morphology, particle size, and zeta potential. We assessed the cytotoxicity of QC-SLNs and ETO on breast cancer cells via the MTT assay. Effects on apoptosis intensity in MDA-MB-231 cells have been detected utilizing annexin V-FITC, PI, and caspase activities. Real-time PCR assessed Bax gene and Bcl-2 gene fold change expression, while Western blot analysis determined p53 and p21 protein levels.
Results
Spherical, negatively charged QC-SLNs, when combined with ETO, significantly enhanced inhibition of MDA-MB-231 cell proliferation compared to ETO or QC-SLNs alone. The combined treatment also notably increased the apoptosis pathway. QC-SLNs + ETO increased the Bax/Bcl-2 gene ratio, elevated p53 and p21 proteins, and activated caspase 3 and 9 enzymes. These results indicate the potential for QC-SLNs + ETO as a strategy for breast cancer treatment, potentially overcoming ETO-resistant breast cancer chemoresistance.
Conclusion
These results suggest that QC-SLN has the potential to have a substantial impact on the breast cancer cure by improving the efficacy of ETO. This enhancement could potentially help overcome chemoresistance observed in ETO-resistant breast cancer.
Collapse