1
|
Zhang S, Zhao G, Wang J, Xie C, Liang W, Chen K, Wen Y, Li X. Organic Solvent-Free Preparation of Chitosan Nanofibers with High Specific Surface Charge and Their Application in Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12347-12358. [PMID: 33625203 DOI: 10.1021/acsami.0c21796] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The application of chitosan nanofibers in biological tissue-engineering materials has attracted wide attention. A novel and organic solvent-free method was developed for the fabrication of rootlike chitosan nanofibers (CSNFs) with diameters of 40-250 nm. This method includes three-step mechanical processing of swelling-beating-centrifugation or swelling-beating-homogenization. The obtained nanofibers showed high yields (>95%) and positive specific surface charges (up to +375 μeq/g) and could be uniformly dispersed in the aqueous phase. The unique fiber shape and the good length-to-diameter ratio of CSNFs endowed chitosan nanofiber paper (CSNFP) products with excellent mechanical properties, and the wet tensile strength of the CSNFPs was nearly five times higher than common chitosan films. In addition, the calvaria-derived preosteoblastic cells exhibited a higher adherence efficiency and proliferation on CSNFP than on chitosan films. The chitosan nanofiber scaffold products also benefited the attachment of preosteoblastic cells and allowed them to grow in three dimensions. This method has significant industrial potential for the industrialization of chitosan nanofibers, which may have broad applications in various biomaterials.
Collapse
Affiliation(s)
- Sihan Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Guanglei Zhao
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jiming Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chong Xie
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wenquan Liang
- Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510500, China
| | - Kebing Chen
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Disease, The Third Affiliated Hospital of Southern Medical University, the Third School of Clinical Medicine, Southern Medical University, Academy of Orthopedics of Guangdong Province, Guangzhou 510630, China
| | - Ying Wen
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiaofeng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510644, China
| |
Collapse
|
2
|
Seyedian R, Shabankareh Fard E, Najafiasl M, Assadi M, Zaeri S. N-acetylcysteine-loaded electrospun mats improve wound healing in mice and human fibroblast proliferation in vitro: a potential application of nanotechnology in wound care. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1590-1602. [PMID: 33489034 PMCID: PMC7811817 DOI: 10.22038/ijbms.2020.41550.11078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/12/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVES N-acetylcysteine (NAC) has gained attention recently in dermatology as a unique anti-oxidant. In light of progress in nanotechnological methods, it was hypothesized that loading NAC onto nanofibers would positively affect skin wound healing. The objective of this study was to fabricate NAC-loaded electrospun mats and test their effect on wound healing in vivo and in vitro. MATERIALS AND METHODS Polyvinyl alcohol (PVA)-based mats loaded with NAC at three concentrations were electrospun and characterized in terms of physicochemical properties and drug release profile. Human fibroblast cells (in vitro) and mouse full-thickness skin wounds (in vivo) were treated with mats for 5 and 14 days, respectively. Wound area, tissue histopathology, fibroblast proliferation and cellular oxidative state were evaluated. RESULTS Mats containing 5% PVA/NAC showed thinner fibers with suitable physicochemical properties and a sustained drug release profile. PVA/NAC (5%) mats enhanced fibroblast proliferation and attachment in vitro. The mats resulted in significant wound closure with high levels of re-epithelialization and collagen fiber synthesis on day 14 post-surgery in vivo. The mats also reduced granulation tissue and edematous stroma to a higher extent. These findings were accompanied by a significant decrease in tissue lipid peroxidation and higher superoxide dismutase activity, which may explain how NAC improved wound healing. CONCLUSION We propose an NAC-loaded nanofibrous mat that takes the advantage of a porous nanoscaffold structure to release NAC in a sustained manner. This mat may be a promising candidate for further clinical evaluation.
Collapse
Affiliation(s)
- Ramin Seyedian
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Elham Shabankareh Fard
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Najafiasl
- Department of Chemical Engineering, School of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran
| | - Majid Assadi
- Nuclear Medicine and Molecular Imaging Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sasan Zaeri
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
3
|
Lu RJ, Wang X, He HX, E LL, Li Y, Zhang GL, Li CJ, Ning CY, Liu HC. Tantalum-incorporated hydroxyapatite coating on titanium implants: its mechanical and in vitro osteogenic properties. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:111. [PMID: 31583537 DOI: 10.1007/s10856-019-6308-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE The fabrication of bioactive coatings on metallic implants to enhance osseointegration has become a topic of general interest in orthopedics and dentistry. Hydroxyapatite (HA) coating has been shown to induce bone formation and promote bone-implant integration. Unfortunately, poor mechanical performance has hindered this from becoming a favorable coating material. The majority of present studies have focused in incorporating different elements into HA coatings to improve mechanical properties. In recent years, tantalum (Ta) has received increasing attention due to its excellent biocompatibility and corrosion resistance. The aim of on the present study was to investigate the fabrication and biological performance of Ta-incorporated HA coatings. METHODS Ta-incorporated HA coatings were fabricated using the plasma spray technique on a titanium substrate, and the surface characteristics and mechanical properties were examined. In addition, the effects of Ta-incorporated HA coatings on the biological behavior of mesenchymal stem cells (BMSCs) were investigated. RESULTS Ta-incorporated HA coatings with microporous structure had higher roughness and wettability. In addition, the bonding strength of Ta/HA coatings with the substrate was substantially superior to HA coatings. Furthermore, Ta-incorporated HA coatings not only facilitated initial cell adhesion and faster proliferation, but also promoted the osteogenic differentiation of BMSCs. CONCLUSION These results indicate that the incorporation of Ta could improve mechanical performance and increase the osteogenic activity of HA coatings. The Ta-incorporated HA coating fabricated by plasma spraying is expected to be a promising bio-coating material for metallic implants.
Collapse
Affiliation(s)
- Rong-Jian Lu
- Department of Stomatology, the Fifth Medical Center, Chinese PLA General Hospital, 100071, Beijing, China
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, 030001, Taiyuan, China
| | - Hui-Xia He
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Ling-Ling E
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Ying Li
- School of Materials Science and Technology, South China University of Technology, 510641, Guangzhou, China
| | - Gui-Lan Zhang
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Chuan-Jie Li
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Cheng-Yun Ning
- School of Materials Science and Technology, South China University of Technology, 510641, Guangzhou, China
| | - Hong-Chen Liu
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, 100853, Beijing, China.
| |
Collapse
|
4
|
Serbezeanu D, Vlad-Bubulac T, Rusu D, Grădișteanu Pircalabioru G, Samoilă I, Dinescu S, Aflori M. Functional Polyimide-Based Electrospun Fibers for Biomedical Application. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3201. [PMID: 31569582 PMCID: PMC6804058 DOI: 10.3390/ma12193201] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/21/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023]
Abstract
The current study focuses on the application of cytotoxicity tests upon one membrane matrix based on electrospun polyimide fibers, appealing for biomedical application, such as scaffolds for cell growth, patches or meshes for wound healing, etc. Assays were performed in order to determine the viability and proliferation of L929 murine fibroblasts after they were kept in direct contact with the studied electrospun polyimide fibers. Increased cell viability and proliferation were detected for cells seeded on electrospun polyimide fibers membrane, in comparison with the control system, either after two or six days of evaluation. The number of live cells was higher on the studied material compared to the control, after two and six days of cell seeding. The tendency of the cells to proliferate on the electrospun polyimide fibers was revealed by confocal microscopy. The morphological stability of electrospun polyimide membrane was evaluated by SEM observation, after immersion of the samples in phosphate buffer saline solution (PBS, 7.4 at 37 °C) at various time intervals. Additionally, the easy production of electrospun polyimide fibers can facilitate the development of these types of matrices into specific biomedical applications in the future.
Collapse
Affiliation(s)
- Diana Serbezeanu
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda, 41A, 700487 Iasi, Romania; (T.V.-B.); (D.R.)
| | - Tăchiță Vlad-Bubulac
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda, 41A, 700487 Iasi, Romania; (T.V.-B.); (D.R.)
| | - Daniela Rusu
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda, 41A, 700487 Iasi, Romania; (T.V.-B.); (D.R.)
| | | | - Iuliana Samoilă
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (I.S.); (S.D.)
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (I.S.); (S.D.)
| | - Magdalena Aflori
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda, 41A, 700487 Iasi, Romania; (T.V.-B.); (D.R.)
| |
Collapse
|
5
|
Yang F, Miao Y, Wang Y, Zhang LM, Lin X. Electrospun Zein/Gelatin Scaffold-Enhanced Cell Attachment and Growth of Human Periodontal Ligament Stem Cells. MATERIALS 2017; 10:ma10101168. [PMID: 29023390 PMCID: PMC5666974 DOI: 10.3390/ma10101168] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/07/2017] [Accepted: 10/08/2017] [Indexed: 12/12/2022]
Abstract
Periodontitis is a widespread dental disease affecting 10 to 15% of worldwide adult population, yet the current treatments are far from satisfactory. The human periodontal ligament stem cell is a promising potential seed cell population type in cell-based therapy and tissue regeneration, which require appropriate scaffold to provide a mimic extracellular matrix. Zein, a native protein derived from corn, has an excellent biodegradability, and therefore becomes a hotspot on research and application in the field of biomaterials. However, the high hydrophobicity of zein is unfavorable for cell adhesion and thus greatly limits its use. In this study, we fabricate co-electrospun zein/gelatin fiber scaffolds in order to take full advantages of the two natural materials and electrospun fiber structure. Zein and gelatin in four groups of different mass ratios (100:00, 100:20, 100:34, 100:50), and dissolved the mixtures in 1,1,1,3,3,3-hexafluoro-2-propanol, then produced membranes by electrospinning. The results showed that the scaffolds were smooth and homogeneous, as shown in scanning electron micrographs. The diameter of hybrid fibers was increased from 69 ± 22 nm to 950 ± 356 nm, with the proportion of gelatin increase. The cell affinity of zein/gelatin nanofibers was evaluated by using human periodontal ligament stem cells. The data showed that hydrophilicity and cytocompatibility of zein nanofibers were improved by blended gelatin. Taken together, our results indicated that the zein/gelatin co-electrospun fibers had sufficient mechanical properties, satisfied cytocompatibility, and can be utilized as biological scaffolds in the field of tissue regeneration.
Collapse
Affiliation(s)
- Fanqiao Yang
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China.
| | - Yingling Miao
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yan Wang
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China.
| | - Li-Ming Zhang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xuefeng Lin
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China.
| |
Collapse
|