1
|
Mastrorocco A, Cacopardo L, Temerario L, Martino NA, Tridente F, Rizzo A, Lacalandra GM, Robbe D, Carluccio A, Dell’Aquila ME. Investigating and Modelling an Engineered Millifluidic In Vitro Oocyte Maturation System Reproducing the Physiological Ovary Environment in the Sheep Model. Cells 2022; 11:cells11223611. [PMID: 36429039 PMCID: PMC9688735 DOI: 10.3390/cells11223611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/04/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
In conventional assisted reproductive technologies (ARTs), oocytes are in vitro cultured in static conditions. Instead, dynamic systems could better mimic the physiological in vivo environment. In this study, a millifluidic in vitro oocyte maturation (mIVM) system, in a transparent bioreactor integrated with 3D printed supports, was investigated and modeled thanks to computational fluid dynamic (CFD) and oxygen convection-reaction-diffusion (CRD) models. Cumulus-oocyte complexes (COCs) from slaughtered lambs were cultured for 24 h under static (controls) or dynamic IVM in absence (native) or presence of 3D-printed devices with different shapes and assembly modes, with/without alginate filling. Nuclear chromatin configuration, mitochondria distribution patterns, and activity of in vitro matured oocytes were assessed. The native dynamic mIVM significantly reduced the maturation rate compared to the static group (p < 0.001) and metaphase II (MII) oocytes showed impaired mitochondria distribution (p < 0.05) and activity (p < 0.001). When COCs were included in a combination of concave+ring support, particularly with alginate filling, oocyte maturation and mitochondria pattern were preserved, and bioenergetic/oxidative status was improved (p < 0.05) compared to controls. Results were supported by computational models demonstrating that, in mIVM in biocompatible inserts, COCs were protected from shear stresses while ensuring physiological oxygen diffusion replicating the one occurring in vivo from capillaries.
Collapse
Affiliation(s)
- Antonella Mastrorocco
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
- Correspondence:
| | - Ludovica Cacopardo
- Research Centre E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Letizia Temerario
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Nicola Antonio Martino
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Federico Tridente
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Annalisa Rizzo
- Department of Veterinary Medicine, University of Bari Aldo Moro, Str. Prov. Casamassima Km. 3, 70010 Valenzano, Italy
| | - Giovanni Michele Lacalandra
- Department of Veterinary Medicine, University of Bari Aldo Moro, Str. Prov. Casamassima Km. 3, 70010 Valenzano, Italy
| | - Domenico Robbe
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d’Accio, 64100 Teramo, Italy
| | - Augusto Carluccio
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d’Accio, 64100 Teramo, Italy
| | - Maria Elena Dell’Aquila
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| |
Collapse
|
2
|
Sequential IVM by CNP preincubation and cooperating of PGE2 with AREG enhances developmental competence of SCNT reconstructs in goat. Sci Rep 2022; 12:4243. [PMID: 35273320 PMCID: PMC8913792 DOI: 10.1038/s41598-022-08238-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/04/2022] [Indexed: 12/03/2022] Open
Abstract
Developmental competence of in vitro matured cumulus oocyte complexes (COCs) in conventional IVM (C.IVM) is lower than in vivo maturated COCs and is related to unsynchronized nuclear and cytoplasmic maturation. To overcome this dearth, COCs can be exposed to granulosa secreted factors in a two-step system. Therefore, in the first experiment, 1000 nM of C-type natriuretic peptide for 8 h was determined (CAPA), as the best time and concentration to retain oocytes in germinal vesicle stage. This condition, also reduces lipid droplets and increases the expression of ATGL and PLIN2 involved in lipolysis and lipogenesis, respectively. In the second experiment, maturation was stimulated with prostaglandin E2 and amphiregulin for 18 h (CAPA-IVM), and their optimal concentrations based on blastocyst formation rates through in vitro fertilization (IVF) were determined as 1 and 600 nM, respectively. In the third experiment, the in vitro and in vivo developmental competency of SCNT embryos in CAPA-IVM group were determined. Despite similar blastocyst formation rates in IVF and SCNT between CAPA-IVM and C.IVM, the quality of blastocysts were quality was higher in CAPA-IVM, which reflected itself, as higher ICM/TE ratio and also expression of NANOG in SCNT blastocysts. Pregnancy rate, live births rate and SCNT efficiency were not significant between CAPA-IVM and C.IVM groups. Therefore, CAPA-IVM can improve the developmental competency of SCNT derived embryos.
Collapse
|
3
|
Sadeghzadeh Oskouei B, Zargari S, Shahabi P, Ghaffari Novin M, Pashaiasl M. Design and Microfabrication of An On-Chip Oocyte Maturation System for Reduction of Apoptosis. CELL JOURNAL 2021; 23:32-39. [PMID: 33650818 PMCID: PMC7944125 DOI: 10.22074/cellj.2021.7056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/13/2019] [Indexed: 11/04/2022]
Abstract
Objective In customary assisted reproductive technology (ART), oocyte culture occurs in static micro drops of Petri dishes with vast media volume; while, the in vivo condition is dynamic. In this study, we aimed to improve the maturation efficiency of mammalian oocytes by designing an optimal microchamber array to obtain the integration of oocyte trapping and maturation within a microfluidic device and evaluate the role of microfluidic culture condition in lipid peroxidation level of the culture medium, in vitro matured oocytes apoptosis, and its comparison with the conventional static system. Materials and Methods In this experimental research, immature oocytes were collected from ovaries of the Naval Medical Research Institute (NMRI) mice. Oocytes were randomly laid in static and dynamic (passive and active) in vitro maturation culture medium for 24 hours. The lipid peroxidation level in oocyte culture media was assessed by measuring the concentration of malondialdehyde (MDA), and the rate of apoptosis in in vitro matured oocytes was assessed by the TUNEL assay after a-24 hour maturation period. Results The MDA concentration in both dynamic oocyte maturation media were significantly lower than the static medium (0.003 and 0.002 vs. 0.13 μmol/L, P<0.01). Moreover, the rate of apoptosis in matured oocytes after a-24 hour maturation period was significantly lower in passive dynamic and active dynamic groups compared with the static group (16%, 15% vs. 35%, P<0.01). Conclusion The dynamic culture for in vitro oocyte maturation (IVM) improves the viability of IVM oocytes in comparison with the static culture condition.
Collapse
Affiliation(s)
- Behnaz Sadeghzadeh Oskouei
- Department of Midwifery, School of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavash Zargari
- Department of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Parviz Shahabi
- Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marefat Ghaffari Novin
- Cellular and Molecular Biology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Pashaiasl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Granulosa secreted factors improve the developmental competence of cumulus oocyte complexes from small antral follicles in sheep. PLoS One 2020; 15:e0229043. [PMID: 32182244 PMCID: PMC7077809 DOI: 10.1371/journal.pone.0229043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Oocyte in vitro maturation can be improved by mimicking the intra-follicular environment. Oocyte, cumulus cells, granulosa cells, and circulating factors act as meiotic regulators in follicles and maintain oocyte in the meiotic phase until oocyte becomes competent and ready to be ovulated. In a randomized experimental design, an ovine model was used to optimize the standard in vitro maturation media by Granulosa secreted factors. At first, the development capacity of oocyte derived from medium (>4 to 6 mm) and small (2 to ≤4 mm) size follicles was determined. Differential gene expression of granulosa secreted factors and their receptors were compared between the cumulus cells of the two groups. Then, the best time and concentration for arresting oocytes at the germinal vesicle stage by natriuretic peptide type C (CNP) were determined by nuclear staining in both groups. Oocyte quality was further confirmed by calcein uptake and gene expression. The developmental competence of cumulus oocyte complexes derived from small size follicles that were cultured in the presence of CNP in combination with amphiregulin (AREG) and prostaglandin E2 (PGE2) for 24 h was determined. Finally, embryo quality was specified by assessing expressions of NANOG, SOX2, CDX2, OCT4, and TET1. The cumulus oocyte complexes derived from small size follicles had a lower capacity to form blastocyst in comparison with cumulus oocyte complexes derived from medium size follicles. Prostaglandin E receptor 2 and prostaglandin-endoperoxide synthase 2 had significantly lower expression in cumulus cells derived from small size follicles in comparison with cumulus cells derived from medium size follicles. Natriuretic peptide type C increased the percentage of cumulus oocyte complexes arresting at the germinal vesicle stage in both oocytes derived from medium and small follicles. Gap junction communication was also improved in the presence of natriuretic peptide type C. In oocytes derived from small size follicles; best blastocyst rates were achieved by sequential exposure of cumulus oocyte complexes in [TCM+CNP (6 h), then cultured in TCM+AREG+PGE2 (18h)] and [TCM+CNP (6 h), then cultured in conventional IVM supplements+AREG+PGE2 (18h)]. Increased SOX2 expression was observed in [TCM+CNP (6 h), then cultured in TCM+AREG+PGE2 (18h)], while decreased OCT4 expression was observed in [TCM+CNP (6 h), then cultured in conventional IVM supplements+AREG+PGE2 (18h)]. It seems that the natriuretic peptide type C modulates meiotic progression, and oocyte development is probably mediated by amphiregulin and prostaglandin E2. These results may provide an alternative IVM method to optimize in vitro embryo production in sheep and subsequently for humans.
Collapse
|
5
|
Li H, Garner T, Diaz F, Wong PK. A Multiwell Microfluidic Device for Analyzing and Screening Nonhormonal Contraceptive Agents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901910. [PMID: 31162807 PMCID: PMC8996375 DOI: 10.1002/smll.201901910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 05/03/2023]
Abstract
Birth control and family planning play pivotal roles in the economic growth and reduction of maternal, infant, and child mortality. Current contraceptives, such as hormonal agents and intrauterine devices, target only a small subset of reproductive processes and can have serious side effects on the health of women. To develop novel contraceptive agents, a scalable microfluidic device is established for analyzing and screening the effects of potential contraceptive agents on the maturation of the cumulus-oocyte complex. The microfluidic device performs on-chip incubation for studying oocyte maturation and cumulus expansion and isolates the microwells by oil-water interfaces to avoid crosstalk between the wells. A filter membrane is incorporated in the device to simplify incubation, medium exchange, washing, and fluorescence staining of oocytes. Cumulus expansion can be monitored directly in the device and oocyte maturation can be examined after enzymatic removal of cumulus cells and on-chip fluorescence staining. The performance of the device is evaluated by studying the influence of three drugs known to block oocyte maturation and/or cumulus expansion.
Collapse
Affiliation(s)
- Hui Li
- Department of Biomedical Engineering, The Pennsylvania State University, 517 CBEB Building, University Park, PA, 16802, USA
| | - Tyler Garner
- Department of Animal Science, The Pennsylvania State University, 335 ASI Building, University Park, PA, 16802, USA
| | - Francisco Diaz
- Department of Animal Science, The Pennsylvania State University, 335 ASI Building, University Park, PA, 16802, USA
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, 517 CBEB Building, University Park, PA, 16802, USA
- Department of Mechanical Engineering and Surgery, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
| |
Collapse
|
6
|
Young AN, Moyle-Heyrman G, Kim JJ, Burdette JE. Microphysiologic systems in female reproductive biology. Exp Biol Med (Maywood) 2017; 242:1690-1700. [PMID: 29065798 PMCID: PMC5786365 DOI: 10.1177/1535370217697386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Microphysiologic systems (MPS), including new organ-on-a-chip technologies, recapitulate tissue microenvironments by employing specially designed tissue or cell culturing techniques and microfluidic flow. Such systems are designed to incorporate physiologic factors that conventional 2D or even 3D systems cannot, such as the multicellular dynamics of a tissue-tissue interface or physical forces like fluid sheer stress. The female reproductive system is a series of interconnected organs that are necessary to produce eggs, support embryo development and female health, and impact the functioning of non-reproductive tissues throughout the body. Despite its importance, the human reproductive tract has received less attention than other organ systems, such as the liver and kidney, in terms of modeling with MPS. In this review, we discuss current gaps in the field and areas for technological advancement through the application of MPS. We explore current MPS research in female reproductive biology, including fertilization, pregnancy, and female reproductive tract diseases, with a focus on their clinical applications. Impact statement This review discusses existing microphysiologic systems technology that may be applied to study of the female reproductive tract, and those currently in development to specifically investigate gametes, fertilization, embryo development, pregnancy, and diseases of the female reproductive tract. We focus on the clinical applicability of these new technologies in fields such as assisted reproductive technologies, drug testing, disease diagnostics, and personalized medicine.
Collapse
Affiliation(s)
| | - Georgette Moyle-Heyrman
- College of Science & Technology, University of Wisconsin – Green Bay, Green Bay, WI 54311, USA
| | - J Julie Kim
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|