1
|
Bi Y, Feng W, Kang Y, Wang K, Yang Y, Qu L, Chen H, Lan X, Pan C. Detection of mRNA Expression and Copy Number Variations Within the Goat Fec B Gene Associated With Litter Size. Front Vet Sci 2021; 8:758705. [PMID: 34733908 PMCID: PMC8558618 DOI: 10.3389/fvets.2021.758705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
The Booroola fecundity (Fec B ) gene, as the first major fecundity gene identified in Booroola sheep, has attracted careful attention. So far, previous research have uncovered the FecB mutation (Q249R) as the main mutation by virtue of which sheep exhibits multiple lambing phenomena. This mutation is now being intensively studied and widely used. However, such effect of the FecB mutation has not been applied to goats, and similar types of the Fec B gene in goats still need to be studied. Thus, the current study attempted to verify potential mutations in the goat Fec B gene as well as investigate their functions related to fecundity. First, Fec B expression was investigated in six different goat tissues, and we found that Fec B expression was highest in the mammary gland, followed by the ovary. Next, the influence of the Fec B gene was analyzed from a new perspective, where five potential copy number variations (CNVs) (CNV1-5) within the Fec B gene were identified for the first time, and then their effects on litter size were measured. Our results point out that CNV3 (P = 3.44E-4) and CNV5 (P = 0.034) could significantly influence the litter size of goats. Identically, the combination genotype of CNV3 and CNV5 which consisted of their dominant genotypes was also significantly associated with goat litter size (P = 7.80E-5). Hence, CNV3 and CNV5 could serve as potential DNA molecular markers applied to DNA editing and DNA microarray. Additionally, the abovementioned study has laid a theoretical foundation for the detection of potential fertility-related quantitative trait loci within the goat Fec B gene.
Collapse
Affiliation(s)
- Yi Bi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Provincial, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Weijie Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Provincial, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yuxin Kang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Provincial, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Ke Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Provincial, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yuta Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Provincial, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China.,Life Science Research Center, Yulin University, Yulin, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Provincial, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Provincial, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Provincial, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
2
|
Wang H, Khoradmehr A, Jalali M, Salehi MS, Tsutsui K, Jafarzadeh Shirazi MR, Tamadon A. The roles of RFamide-related peptides (RFRPs), mammalian gonadotropin-inhibitory hormone (GnIH) orthologues in female reproduction. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:1210-1220. [PMID: 30627363 PMCID: PMC6312679 DOI: 10.22038/ijbms.2018.30520.7355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/21/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVES To benefit from reproduction and deal with challenges in the environmental conditions, animals must adapt internal physiology to maximize the reproduction rate. Maladaptive variations in the neurochemical systems and reproductive system can lead to manifestation of several significant mammalian reprocesses, including mammalian ovarian lifespan. RFamide-related peptide (RFRP, Rfrp), mammalian orthologues of gonadotropin-inhibitory hormone (GnIH), which is a regulator to prevent the gonadotropin-releasing hormone (GnRH) neural activity, is known to be related to reproductive traits. This review aimed to summarize recent five-year observations to outline historic insights and novel perspectives into the functions of RFRPs in coding the mammalian reproductive physiology, especially highlight recent advances in the impact on RFRPs in regulating mammalian ovary lifespan. MATERIALS AND METHODS We reviewed the recent five-year important findings of RFRP system involved in mammalian ovary development. Data for this review were collected from Google Scholar and PubMed using the RFRP keyword combined with the keywords related to physiological or pathological reproductive functions. RESULTS Recent discoveries are focused on three major fronts in research on RFRP role in female reproduction including reproductive functions, energy balance, and stress regulation. The roles of RFRPs in various development phases of mammal reproduction including prepuberty, puberty, estrous cycle, pregnancy, milking, menopause, and/or ovarian diseases have been shown. CONCLUSION Overall, these recent advances demonstrate that RFRPs serve as critical mediators in mammalian ovarian development.
Collapse
Affiliation(s)
- Huimei Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences; Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Arezoo Khoradmehr
- Research and Clinical Center for Infertility, Yazd Reproduction Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Jalali
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Saied Salehi
- Department of Physiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | | | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
3
|
He Y, Sun W, Yu J. Is precocious puberty linked to hypothalamic expression of arginine-phenylalanine-amide-related peptide? IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:1074-1078. [PMID: 29147481 PMCID: PMC5673690 DOI: 10.22038/ijbms.2017.9397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The up-regulation and down-regulation of gonadotropin-releasing hormone (GnRH) in central precocious puberty is not yet known. However, recent advances in neuroendocrinology have shown the controlling role of arginine-phenylalanine RF-amide-related peptides (RFRPs) on GnRH secretion in different phenomenon of reproduction such as estrus cycle and pregnancy, but the exact role of RFRPs in puberty and its related pathologic condition, precocious puberty, is not clear yet. This paper hypothesizes that RFRP is a regulatory peptide of puberty and might prevent the precocious puberty. On the basis of previous studies on hormonal fluctuations at the time of puberty, RFRP might have a role on controlling of premature secretion of GnRH and avoiding central precocious puberty.
Collapse
Affiliation(s)
- Yuanyuan He
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, 200032, China
| | - Wen Sun
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, 200032, China
| | - Jian Yu
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, 200032, China
| |
Collapse
|