1
|
Camp OG, Moussa DN, Hsu R, Awonuga AO, Abu-Soud HM. The interplay between oxidative stress, zinc, and metabolic dysfunction in polycystic ovarian syndrome. Mol Cell Biochem 2024:10.1007/s11010-024-05113-x. [PMID: 39266804 DOI: 10.1007/s11010-024-05113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
Polycystic ovarian syndrome (PCOS) is a functional endocrine disorder characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology that has been associated with chronic disease and comorbidities including adverse metabolic and cardiac disorders. This review aims to evaluate the role of oxidative stress and zinc in the metabolic dysfunction observed in PCOS, with a focus on insulin resistance. Recent studies indicate that oxidative stress markers are elevated in PCOS and correlate with hyperandrogenemia, obesity, and insulin resistance. Zinc, an essential trace element, is crucial for metabolic processes, particularly in the pancreas for beta-cell function and glucagon secretion. Insufficient zinc levels have been linked to diabetes, obesity, and lipid metabolism disorders. This review aims to highlight the interplay between oxidative stress, zinc, and metabolic dysfunction in PCOS, suggesting that zinc supplementation could mitigate some metabolic and endocrine manifestations of PCOS.
Collapse
Affiliation(s)
- Olivia G Camp
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Daniel N Moussa
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Richard Hsu
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
2
|
Liu WJ, Li LS, Lan MF, Shang JZ, Zhang JX, Xiong WJ, Lai XL, Duan X. Zinc deficiency deteriorates ovarian follicle development and function by inhibiting mitochondrial function. J Ovarian Res 2024; 17:115. [PMID: 38807213 PMCID: PMC11134637 DOI: 10.1186/s13048-024-01442-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Zinc (Zn) is a crucial trace element essential for human growth and development, particularly for reproductive health. Previous research has shown a decrease in serum zinc concentration with age and individuals with conditions such as polycystic ovary syndrome (PCOS) and diabetes mellitus. However, the specific effects of zinc deficiency on the female reproductive system, especially ovarian function, are not fully understood. In our study, we observed a significant reduction in the total number of follicles and mature follicles in the zinc deficiency group. This reduction correlated with decreased level of anti-Mullerian hormone (AMH) and abnormal gene expression affecting hormone secretion regulation. Furthermore, we found that zinc deficiency disrupted mitochondrial dynamics, leading to oxidative stress in the ovaries, which further inhibited autophagy and increased ovarian apoptosis. These changes ultimately resulted in the failure of germinal vesicle breakdown (GVBD) and reduced oocyte quality. Meanwhile, administration of zinc glycine effectively alleviated the oocyte meiotic arrest caused by dietary zinc deficiency. In conclusion, our findings demonstrated that dietary zinc deficiency can affect hormone secretion and follicle maturation by impairing mitochondrial function and autophagy.
Collapse
Affiliation(s)
- Wen-Jiao Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Li-Shu Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Meng-Fan Lan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jian-Zhou Shang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jin-Xin Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Wen-Jie Xiong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xin-Le Lai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
3
|
Lu H, Wang X, Zhang X, Yu W, Guo X, Wang R, Xie C, Ma J, Wang S. ZnT 9 Involvement in Estradiol-Modulated Zinc Homeostasis of the Human Follicular Microenvironment. Biol Trace Elem Res 2024; 202:1901-1909. [PMID: 37578601 DOI: 10.1007/s12011-023-03804-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
Female subfertility has been a growing concern for reproductive health. Assisted reproductive technologies make pregnancy possible, but the outcome rate is still suboptimal. Zinc is an essential factor for fertility and development. Zinc levels in follicular fluids were measured by electrochemical method, and we found that zinc in the follicular fluids was related to high-quality embryo rate (R = 0.39, p = 0.01). Basal estradiol levels and estradiol levels on the day of HCG injection were negatively correlated with zinc concentrations in the follicular fluid (R = - 0.53, p < 0.001; R = - 0.32, p < 0.05), and estradiol promoted ZnT 9 protein expression in cumulus granulosa cells in vitro and in vivo. When the zinc level was at 3.63-3.85 μg/mL, follicular fluid samples had the highest SOD activity. Therefore, zinc played an important role in improving oocyte development by increasing antioxidant capacity. Our results suggested that estradiol affected zinc homeostasis in follicles by controlling the expression of ZnT 9, which in turn influenced the potential of oocytes to develop into good-quality embryos. This study to provide tangible improvements to patient outcomes will make it a focus of both scientific and translational efforts in the future.
Collapse
Affiliation(s)
- Hui Lu
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, Xinhua District, No. 480 Heping Road, Shijiazhuang, 050071, China
| | - Xueying Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, Xinhua District, No. 480 Heping Road, Shijiazhuang, 050071, China
| | - Xiujia Zhang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, Xinhua District, No. 480 Heping Road, Shijiazhuang, 050071, China
| | - Wenbo Yu
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, Xinhua District, No. 480 Heping Road, Shijiazhuang, 050071, China
| | - Xiaoli Guo
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, Xinhua District, No. 480 Heping Road, Shijiazhuang, 050071, China
| | - Ruhua Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, Xinhua District, No. 480 Heping Road, Shijiazhuang, 050071, China
| | - Congcong Xie
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, Xinhua District, No. 480 Heping Road, Shijiazhuang, 050071, China
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, Xinhua District, No. 480 Heping Road, Shijiazhuang, 050071, China
| | - Shusong Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, Xinhua District, No. 480 Heping Road, Shijiazhuang, 050071, China.
| |
Collapse
|
4
|
Hanassab S, Abbara A, Yeung AC, Voliotis M, Tsaneva-Atanasova K, Kelsey TW, Trew GH, Nelson SM, Heinis T, Dhillo WS. The prospect of artificial intelligence to personalize assisted reproductive technology. NPJ Digit Med 2024; 7:55. [PMID: 38429464 PMCID: PMC10907618 DOI: 10.1038/s41746-024-01006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/10/2024] [Indexed: 03/03/2024] Open
Abstract
Infertility affects 1-in-6 couples, with repeated intensive cycles of assisted reproductive technology (ART) required by many to achieve a desired live birth. In ART, typically, clinicians and laboratory staff consider patient characteristics, previous treatment responses, and ongoing monitoring to determine treatment decisions. However, the reproducibility, weighting, and interpretation of these characteristics are contentious, and highly operator-dependent, resulting in considerable reliance on clinical experience. Artificial intelligence (AI) is ideally suited to handle, process, and analyze large, dynamic, temporal datasets with multiple intermediary outcomes that are generated during an ART cycle. Here, we review how AI has demonstrated potential for optimization and personalization of key steps in a reproducible manner, including: drug selection and dosing, cycle monitoring, induction of oocyte maturation, and selection of the most competent gametes and embryos, to improve the overall efficacy and safety of ART.
Collapse
Affiliation(s)
- Simon Hanassab
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
- Department of Computing, Imperial College London, London, UK
- UKRI Centre for Doctoral Training in AI for Healthcare, Imperial College London, London, UK
| | - Ali Abbara
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Arthur C Yeung
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Margaritis Voliotis
- Department of Mathematics and Statistics, University of Exeter, Exeter, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, UK
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Statistics, University of Exeter, Exeter, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, UK
| | - Tom W Kelsey
- School of Computer Science, University of St Andrews, St Andrews, UK
| | - Geoffrey H Trew
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
- The Fertility Partnership, Oxford, UK
| | - Scott M Nelson
- The Fertility Partnership, Oxford, UK
- School of Medicine, University of Glasgow, Glasgow, UK
- Biomedical Research Centre, University of Bristol, Bristol, UK
| | - Thomas Heinis
- Department of Computing, Imperial College London, London, UK
| | - Waljit S Dhillo
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK.
- Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
5
|
Lemseffer Y, Terret ME, Campillo C, Labrune E. Methods for Assessing Oocyte Quality: A Review of Literature. Biomedicines 2022; 10:biomedicines10092184. [PMID: 36140285 PMCID: PMC9495944 DOI: 10.3390/biomedicines10092184] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The rate of infertility continues to rise in the world for several reasons, including the age of conception and current lifestyle. We list in this paper potential non-invasive and invasive techniques to assess oocyte quality. We searched the database PubMed using the terms “oocytes AND quality AND evaluation”. In the first part, we study the morphological criteria, compartment by compartment, to then focus in a second part on more objective techniques such as genetics, molecular, apoptosis, or human follicular fluid that contain biologically active molecules. The main criteria used to assess oocyte quality are morphological; however, several other techniques have been studied in women to improve oocyte quality assessment, but most of them are invasive and not usable in routine.
Collapse
Affiliation(s)
- Yassir Lemseffer
- Hospices Civils de Lyon, Service de Médecine de la Reproduction, 59 Bd. Pinel, 69500 Bron, France
- Faculté de Médecine, Université Claude Bernard, Lyon 01, 8 Av. Rockefeller, 69008 Lyon, France
- Correspondence:
| | - Marie-Emilie Terret
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, 75006 Paris, France
| | - Clément Campillo
- LAMBE, Université d’Évry, CNRS, CEA, Université Paris-Saclay, 91025 Évry-Courcouronnes, France
| | - Elsa Labrune
- Hospices Civils de Lyon, Service de Médecine de la Reproduction, 59 Bd. Pinel, 69500 Bron, France
- Faculté de Médecine, Université Claude Bernard, Lyon 01, 8 Av. Rockefeller, 69008 Lyon, France
- INSERM U1208, Stem Cells and Brain Institute, 69500 Bron, France
| |
Collapse
|