1
|
Sasa N, Kishikawa T, Mori M, Ito R, Mizoro Y, Suzuki M, Eguchi H, Tanaka H, Fukusumi T, Suzuki M, Takenaka Y, Nimura K, Okada Y, Inohara H. Intratumor heterogeneity of HPV integration in HPV-associated head and neck cancer. Nat Commun 2025; 16:1052. [PMID: 39865078 PMCID: PMC11770129 DOI: 10.1038/s41467-025-56150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/10/2025] [Indexed: 01/28/2025] Open
Abstract
Integration of human papillomavirus (HPV) into the host genome drives HPV-positive head and neck squamous cell carcinoma (HPV+ HNSCC). Whole-genome sequencing of 51 tumors revealed intratumor heterogeneity of HPV integration, with 44% of breakpoints subclonal, and a biased distribution of integration breakpoints across the HPV genome. Four HPV physical states were identified, with at least 49% of tumors progressing without integration. HPV integration was associated with APOBEC-induced broad genomic instability and focal genomic instability, including structural variants at integration sites. HPV+ HNSCCs exhibited almost no smoking-induced mutational signatures. Heterozygous loss of ataxia-telangiectasia mutated (ATM) was observed in 67% of tumors, with its downregulation confirmed by single-cell RNA sequencing and immunohistochemistry, suggesting ATM haploinsufficiency contributes to carcinogenesis. PI3K activation was the major oncogenic mutation, with JAK-STAT activation in tumors with clonal integration and NF-kappa B activation in those without. These findings provide valuable insights into HPV integration in HPV+ HNSCC.
Collapse
Affiliation(s)
- Noah Sasa
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Tsurumi, Japan
| | - Toshihiro Kishikawa
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Masashi Mori
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Rie Ito
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka Rosai Hospital, Sakai, Japan
| | - Yumie Mizoro
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Masami Suzuki
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hirotaka Eguchi
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hidenori Tanaka
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takahito Fukusumi
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Motoyuki Suzuki
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yukinori Takenaka
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Keisuke Nimura
- Department of Genome Biology, Osaka University Graduate School of Medicine, Suita, Japan
- Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Tsurumi, Japan.
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan.
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Japan.
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Japan.
| |
Collapse
|
2
|
Martinez-Fundichely A, Dixon A, Khurana E. Modeling tissue-specific breakpoint proximity of structural variations from whole-genomes to identify cancer drivers. Nat Commun 2022; 13:5640. [PMID: 36163358 PMCID: PMC9512825 DOI: 10.1038/s41467-022-32945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 08/24/2022] [Indexed: 11/11/2022] Open
Abstract
Structural variations (SVs) in cancer cells often impact large genomic regions with functional consequences. However, identification of SVs under positive selection is a challenging task because little is known about the genomic features related to the background breakpoint distribution in different cancers. We report a method that uses a generalized additive model to investigate the breakpoint proximity curves from 2,382 whole-genomes of 32 cancer types. We find that a multivariate model, which includes linear and nonlinear partial contributions of various tissue-specific features and their interaction terms, can explain up to 57% of the observed deviance of breakpoint proximity. In particular, three-dimensional genomic features such as topologically associating domains (TADs), TAD-boundaries and their interaction with other features show significant contributions. The model is validated by identification of known cancer genes and revealed putative drivers in cancers different than those with previous evidence of positive selection.
Collapse
Affiliation(s)
- Alexander Martinez-Fundichely
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA.
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - Austin Dixon
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Children's National Hospital, Washington, DC, 20010, USA
| | - Ekta Khurana
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA.
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|