1
|
Tan TS, Syed Hassan S, Yap WB. Expression of surface-bound nonstructural 1 (NS1) protein of influenza virus A H5N1 on Lactobacillus casei strain C1. Lett Appl Microbiol 2017; 64:446-451. [PMID: 28370088 DOI: 10.1111/lam.12738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/28/2017] [Indexed: 12/26/2022]
Abstract
The study aimed to construct a recombinant Lactobacillus casei expressing the nonstructural (NS) 1 protein of influenza A virus H5N1 on its cell wall. The NS1 gene was first amplified and fused to the pSGANC332 expression plasmid. The NS1 protein expression was carried out by Lact. casei strain C1. PCR screening and DNA sequencing confirmed the presence of recombinant pSG-NS1-ANC332 plasmid in Lact. casei. The plasmid was stably maintained (98·94 ± 1·65%) by the bacterium within the first 20 generations without selective pressure. The NS1 was expressed as a 49-kDa protein in association with the anchoring peptide. The yield was 1·325 ± 0·065 μg mg-1 of bacterial cells. Lactobacillus casei expressing the NS1 on its cell wall was red-fluorescently stained, but the staining was not observed on Lact. casei carrying the empty pSGANC332. The results implied that Lact. casei strain C1 is a promising host for the expression of surface-bound NS1 protein using the pSGANC332 expression plasmid. SIGNIFICANCE AND IMPACT OF THE STUDY The study has demonstrated, for the first time, the expression of nonstructural 1 (NS1) protein of influenza A virus H5N1 on the cell wall of Lactobacillus casei using the pSGANC332 expression plasmid. Display of NS1 protein on the bacterial cell wall was evident under an immunofluorescence microscopic observation. Lactobacillus casei carrying the NS1 protein could be developed into a universal oral influenza vaccine since the NS1 is highly conserved among influenza viruses.
Collapse
Affiliation(s)
- T S Tan
- Biomedical Science Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, National University of Malaysia, Kuala Lumpur, Malaysia
| | - S Syed Hassan
- School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway Selangor, Malaysia
| | - W B Yap
- Biomedical Science Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, National University of Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Seid CA, Jones KM, Pollet J, Keegan B, Hudspeth E, Hammond M, Wei J, McAtee CP, Versteeg L, Gutierrez A, Liu Z, Zhan B, Respress JL, Strych U, Bottazzi ME, Hotez PJ. Cysteine mutagenesis improves the production without abrogating antigenicity of a recombinant protein vaccine candidate for human chagas disease. Hum Vaccin Immunother 2016; 13:621-633. [PMID: 27737611 DOI: 10.1080/21645515.2016.1242540] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
A therapeutic vaccine for human Chagas disease is under development by the Sabin Vaccine Institute Product Development Partnership. The aim of the vaccine is to significantly reduce the parasite burden of Trypanosoma cruzi in humans, either as a standalone product or in combination with conventional chemotherapy. Vaccination of mice with Tc24 formulated with monophosphoryl-lipid A (MPLA) adjuvant results in a Th1 skewed immune response with elevated IgG2a and IFNγ levels and a statistically significant decrease in parasitemia following T. cruzi challenge. Tc24 was therefore selected for scale-up and further evaluation. During scale up and downstream process development, significant protein aggregation was observed due to intermolecular disulfide bond formation. To prevent protein aggregation, cysteine codons were replaced with serine codons which resulted in the production of a non-aggregated and soluble recombinant protein, Tc24-C4. No changes to the secondary structure of the modified molecule were detected by circular dichroism. Immunization of mice with wild-type Tc24 or Tc24-C4, formulated with E6020 (TLR4 agonist analog to MPLA) emulsified in a squalene-oil-in-water emulsion, resulted in IgG2a and antigen specific IFNγ production levels from splenocytes that were not significantly different, indicating that eliminating putative intermolecular disulfide bonds had no significant impact on the immunogenicity of the molecule. In addition, vaccination with either formulated wild type Tc24 or Tc24-C4 antigen also significantly increased survival and reduced cardiac parasite burden in mice. Investigations are now underway to examine the efficacy of Tc24-C4 formulated with other adjuvants to reduce parasite burden and increase survival in pre-clinical studies.
Collapse
Affiliation(s)
- Christopher A Seid
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Kathryn M Jones
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA.,b Departments of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Jeroen Pollet
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA.,b Departments of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Brian Keegan
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Elissa Hudspeth
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Molly Hammond
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Junfei Wei
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - C Patrick McAtee
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Leroy Versteeg
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Amanda Gutierrez
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Zhuyun Liu
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Bin Zhan
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA.,b Departments of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Jonathan L Respress
- d Southwest Electronic Energy Medical Research Institute (SWEMRI) , Missouri City , TX , USA
| | - Ulrich Strych
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA.,b Departments of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Maria Elena Bottazzi
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA.,b Departments of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Peter J Hotez
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA.,b Departments of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA.,c James A. Baker III Institute for Public Policy , Rice University , Houston , TX , USA
| |
Collapse
|