1
|
Zhou X, Jia X, Chen Y, Song B. Computed Tomography and Magnetic Resonance Imaging in Liver Iron Overload: From Precise Quantification to Prognosis Assessment. Biomedicines 2024; 12:2456. [PMID: 39595022 PMCID: PMC11592092 DOI: 10.3390/biomedicines12112456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Liver iron overload is associated with conditions such as hereditary hemochromatosis, thalassemia major, and chronic liver diseases. The liver-related outcomes, patient outcomes, and treatment recommendations of these patients differ depending on the cause and extent of iron overload. Accurate quantification of the liver iron concentration (LIC) is critical for effective patient management. This review focuses on the application of computed tomography (CT) and magnetic resonance imaging (MRI) for the precise quantification and prognostic assessment of liver iron overload. In recent years, the use of dual-energy CT and the emergence of MRI-based sequences (such as UTE, QSM, Dixon, and CSE technologies) have significantly increased the potential for noninvasive liver iron quantification. However, the establishment of internationally standardized imaging parameters, postprocessing procedures, and reporting protocols is urgently needed for better management of patients with liver iron overload.
Collapse
Affiliation(s)
- Xinrui Zhou
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China; (X.Z.); (X.J.)
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyuan Jia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China; (X.Z.); (X.J.)
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yidi Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China; (X.Z.); (X.J.)
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China; (X.Z.); (X.J.)
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Radiology, Sanya People’s Hospital, Sanya 572000, China
| |
Collapse
|
2
|
Tipirneni-Sajja A, Brasher S, Shrestha U, Johnson H, Morin C, Satapathy SK. Quantitative MRI of diffuse liver diseases: techniques and tissue-mimicking phantoms. MAGMA (NEW YORK, N.Y.) 2023; 36:529-551. [PMID: 36515810 DOI: 10.1007/s10334-022-01053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Quantitative magnetic resonance imaging (MRI) techniques are emerging as non-invasive alternatives to biopsy for assessment of diffuse liver diseases of iron overload, steatosis and fibrosis. For testing and validating the accuracy of these techniques, phantoms are often used as stand-ins to human tissue to mimic diffuse liver pathologies. However, currently, there is no standardization in the preparation of MRI-based liver phantoms for mimicking iron overload, steatosis, fibrosis or a combination of these pathologies as various sizes and types of materials are used to mimic the same liver disease. Liver phantoms that mimic specific MR features of diffuse liver diseases observed in vivo are important for testing and calibrating new MRI techniques and for evaluating signal models to accurately quantify these features. In this study, we review the liver morphology associated with these diffuse diseases, discuss the quantitative MR techniques for assessing these liver pathologies, and comprehensively examine published liver phantom studies and discuss their benefits and limitations.
Collapse
Affiliation(s)
- Aaryani Tipirneni-Sajja
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN, USA.
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Sarah Brasher
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN, USA
| | - Utsav Shrestha
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN, USA
| | - Hayden Johnson
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN, USA
| | - Cara Morin
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sanjaya K Satapathy
- Northwell Health Center for Liver Diseases and Transplantation, Northshore University Hospital/Northwell Health, Manhasset, NY, USA
| |
Collapse
|
3
|
Jacobsen MC, Thrower SL. Multi-energy computed tomography and material quantification: Current barriers and opportunities for advancement. Med Phys 2020; 47:3752-3771. [PMID: 32453879 PMCID: PMC8495770 DOI: 10.1002/mp.14241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Computed tomography (CT) technology has rapidly evolved since its introduction in the 1970s. It is a highly important diagnostic tool for clinicians as demonstrated by the significant increase in utilization over several decades. However, much of the effort to develop and advance CT applications has been focused on improving visual sensitivity and reducing radiation dose. In comparison to these areas, improvements in quantitative CT have lagged behind. While this could be a consequence of the technological limitations of conventional CT, advanced dual-energy CT (DECT) and photon-counting detector CT (PCD-CT) offer new opportunities for quantitation. Routine use of DECT is becoming more widely available and PCD-CT is rapidly developing. This review covers efforts to address an unmet need for improved quantitative imaging to better characterize disease, identify biomarkers, and evaluate therapeutic response, with an emphasis on multi-energy CT applications. The review will primarily discuss applications that have utilized quantitative metrics using both conventional and DECT, such as bone mineral density measurement, evaluation of renal lesions, and diagnosis of fatty liver disease. Other topics that will be discussed include efforts to improve quantitative CT volumetry and radiomics. Finally, we will address the use of quantitative CT to enhance image-guided techniques for surgery, radiotherapy and interventions and provide unique opportunities for development of new contrast agents.
Collapse
Affiliation(s)
- Megan C. Jacobsen
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sara L. Thrower
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
4
|
Kishida Y, Koyama H, Seki S, Yoshikawa T, Kyotani K, Okuaki T, Sugimura K, Ohno Y. Comparison of fat suppression capability for chest MR imaging with Dixon, SPAIR and STIR techniques at 3 Tesla MR system. Magn Reson Imaging 2018; 47:89-96. [DOI: 10.1016/j.mri.2017.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 11/29/2022]
|
5
|
Henninger B, Zoller H, Rauch S, Schocke M, Kannengiesser S, Zhong X, Reiter G, Jaschke W, Kremser C. Automated two-point dixon screening for the evaluation of hepatic steatosis and siderosis: comparison with R2-relaxometry and chemical shift-based sequences. Eur Radiol 2014; 25:1356-65. [PMID: 25501270 DOI: 10.1007/s00330-014-3528-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/27/2014] [Accepted: 11/19/2014] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To evaluate the automated two-point Dixon screening sequence for the detection and estimated quantification of hepatic iron and fat compared with standard sequences as a reference. METHODS One hundred and two patients with suspected diffuse liver disease were included in this prospective study. The following MRI protocol was used: 3D-T1-weighted opposed- and in-phase gradient echo with two-point Dixon reconstruction and dual-ratio signal discrimination algorithm ("screening" sequence); fat-saturated, multi-gradient-echo sequence with 12 echoes; gradient-echo T1 FLASH opposed- and in-phase. Bland-Altman plots were generated and correlation coefficients were calculated to compare the sequences. RESULTS The screening sequence diagnosed fat in 33, iron in 35 and a combination of both in 4 patients. Correlation between R2* values of the screening sequence and the standard relaxometry was excellent (r = 0.988). A slightly lower correlation (r = 0.978) was found between the fat fraction of the screening sequence and the standard sequence. Bland-Altman revealed systematically lower R2* values obtained from the screening sequence and higher fat fraction values obtained with the standard sequence with a rather high variability in agreement. CONCLUSIONS The screening sequence is a promising method with fast diagnosis of the predominant liver disease. It is capable of estimating the amount of hepatic fat and iron comparable to standard methods. KEY POINTS • MRI plays a major role in the clarification of diffuse liver disease. • The screening sequence was introduced for the assessment of diffuse liver disease. • It is a fast and automated algorithm for the evaluation of hepatic iron and fat. • It is capable of estimating the amount of hepatic fat and iron.
Collapse
Affiliation(s)
- B Henninger
- Department of Radiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria,
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
In-Phase Signal Intensity Loss in Solid Renal Masses on Dual-Echo Gradient-Echo MRI: Association With Malignancy and Pathologic Classification. AJR Am J Roentgenol 2014; 203:W421-8. [DOI: 10.2214/ajr.13.11113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Schieda N, Ramanathan S, Ryan J, Khanna M, Virmani V, Avruch L. Diagnostic accuracy of dual-echo (in- and opposed-phase) T1-weighted gradient recalled echo for detection and grading of hepatic iron using quantitative and visual assessment. Eur Radiol 2014; 24:1437-45. [PMID: 24788037 DOI: 10.1007/s00330-014-3170-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/18/2014] [Accepted: 03/31/2014] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Detection and quantification of hepatic iron with dual-echo gradient recalled echo (GRE) has been proposed as a rapid alternative to other magnetic resonance imaging (MRI) techniques. Co-existing steatosis and T1 weighting are limitations. This study assesses the accuracy of routine dual-echo GRE. METHODOLOGY Between 2010 and 2013, 109 consecutive patients underwent multi-echo (ME) MRI and dual-echo GRE for quantification of hepatic iron. Liver iron concentration (LIC) was calculated from ME-MRI. Relative signal intensity (RSI) and fat signal fraction (FSF) were calculated from dual-echo GRE. Four radiologists subjectively evaluated dual-echo GRE (±subtraction). Diagnostic accuracy was compared between techniques and correlated with biopsy using Fisher's exact test, Spearman correlation and regression. RESULTS The sensitivity of visual detection of iron ranged from 48 to 55%. Subtraction did not increase sensitivity (p < 0.001). Inter-observer variability was substantial (κ = 0.72). The specificity of visual detection of iron approached 100% with false-positive diagnoses observed using subtraction. LIC showed a higher correlation with histopathological iron grade (r = 0.94, p < 0.001) compared with RSI (r = 0.65, p = 0.02). Univariate regression showed an association between RSI and LIC (B = 0.98, p < 0.001, CI 0.73-1.23); however, the association was not significant with multi-variate regression including FSF (p = 0.28). CONCLUSIONS Dual-echo GRE has low sensitivity for hepatic iron. Subtraction imaging can result in false-positive diagnoses. KEY POINTS • Routine liver MRI studies cannot effectively screen patients for iron overload. • Concomitant hepatic steatosis and iron limits diagnostic accuracy of routine liver MRI. • Dual-echo GRE subtraction imaging causes false-positive diagnoses of iron overload. • Dedicated MRI techniques should be used to diagnose and quantify iron overload.
Collapse
Affiliation(s)
- Nicola Schieda
- The Ottawa Hospital, The University of Ottawa, 1053 Carling Avenue; , Ottawa, Ontario, Canada, K1Y 4E9,
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Liver fat, iron, and combined overload are common manifestations of diffuse liver disease and may cause lipotoxicity and iron toxicity via oxidative hepatocellular injury, leading to progressive fibrosis, cirrhosis, and eventually, liver failure. Intracellular fat and iron cause characteristic changes in the tissue magnetic properties in predictable dose-dependent manners. Using dedicated magnetic resonance pulse sequences and postprocessing algorithms, fat and iron can be objectively quantified on a continuous scale. In this article, we will describe the basic physical principles of magnetic resonance fat and iron quantification and review the imaging techniques of the "past, present, and future." Standardized radiological metrics of fat and iron are introduced for numerical reporting of overload severity, which can be used toward objective diagnosis, grading, and longitudinal disease monitoring. These noninvasive imaging techniques serve an alternative or complimentary role to invasive liver biopsy. Commercial solutions are increasingly available, and liver fat and iron quantitative imaging is now within reach for routine clinical use and may soon become standard of care.
Collapse
Affiliation(s)
- Takeshi Yokoo
- From the *Department of Radiology, †Advanced Imaging Research Center, and ‡Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | | |
Collapse
|
9
|
Automated patient-tailored screening of the liver for diffuse steatosis and iron overload using MRI. AJR Am J Roentgenol 2013; 201:583-8. [PMID: 23971450 DOI: 10.2214/ajr.12.10051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The purpose of this article is to validate an automated screening method for evaluation of hepatic steatosis or siderosis. MATERIALS AND METHODS This was a two-part study, with retrospective and prospective portions. First, 130 consecutive abdominal MRI examinations, including both the automated algorithm and reference standard fat and iron quantification, were retrospectively identified. The algorithm's performance was validated against the reference standard and was compared with the performance of three expert readers. Subsequently, 39 subjects undergoing liver MRI were prospectively identified and enrolled. These subjects were scanned with a protocol where quantification sequences were either performed or not performed on the basis of the recommendation of the algorithm. Total examination time in these subjects was compared with examination times in the 90 subjects from the retrospective cohort who had undergone a similar liver MRI protocol with complete quantification. RESULTS The automated algorithm was accurate in determining the presence of deposition disease (93.1%), with no significant difference between its conclusions and those of any of the readers (p=0.48-1.0). Use of the algorithm resulted in a small but statistically significant time savings compared with performing quantification in all subjects (28 minutes 56 seconds vs 31 minutes 20 seconds; p<0.05). CONCLUSION Automated screening for hepatic steatosis and siderosis can be performed in real time during abdominal MRI examinations, can save total scan time compared with always performing quantification, and could serve as a gatekeeper for dedicated quantification sequences.
Collapse
|
10
|
Comparison between multi-echo T2* with and without fat saturation pulse for quantification of liver iron overload. Magn Reson Imaging 2013; 31:1704-8. [DOI: 10.1016/j.mri.2013.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 07/02/2013] [Accepted: 07/21/2013] [Indexed: 01/08/2023]
|
11
|
Harry H, Kan HE. Quantitative proton MR techniques for measuring fat. NMR IN BIOMEDICINE 2013; 26:1609-29. [PMID: 24123229 PMCID: PMC4001818 DOI: 10.1002/nbm.3025] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 07/13/2013] [Accepted: 08/19/2013] [Indexed: 05/09/2023]
Abstract
Accurate, precise and reliable techniques for the quantification of body and organ fat distributions are important tools in physiology research. They are critically needed in studies of obesity and diseases involving excess fat accumulation. Proton MR methods address this need by providing an array of relaxometry-based (T1, T2) and chemical shift-based approaches. These techniques can generate informative visualizations of regional and whole-body fat distributions, yield measurements of fat volumes within specific body depots and quantify fat accumulation in abdominal organs and muscles. MR methods are commonly used to investigate the role of fat in nutrition and metabolism, to measure the efficacy of short- and long-term dietary and exercise interventions, to study the implications of fat in organ steatosis and muscular dystrophies and to elucidate pathophysiological mechanisms in the context of obesity and its comorbidities. The purpose of this review is to provide a summary of mainstream MR strategies for fat quantification. The article succinctly describes the principles that differentiate water and fat proton signals, summarizes the advantages and limitations of various techniques and offers a few illustrative examples. The article also highlights recent efforts in the MR of brown adipose tissue and concludes by briefly discussing some future research directions.
Collapse
Affiliation(s)
- Houchun Harry
- Corresponding Author Houchun Harry Hu, PhD Children's Hospital Los Angeles University of Southern California 4650 Sunset Boulevard Department of Radiology, MS #81 Los Angeles, California, USA. 90027 , Office: +1 (323) 361-2688 Fax: +1 (323) 361-1510
| | - Hermien E. Kan
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
12
|
Tang A, Tan J, Sun M, Hamilton G, Bydder M, Wolfson T, Gamst AC, Middleton M, Brunt EM, Loomba R, Lavine JE, Schwimmer JB, Sirlin CB. Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 2013; 267:422-31. [PMID: 23382291 DOI: 10.1148/radiol.12120896] [Citation(s) in RCA: 401] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE To evaluate the diagnostic performance of magnetic resonance (MR) imaging-estimated proton density fat fraction (PDFF) for assessing hepatic steatosis in nonalcoholic fatty liver disease (NAFLD) by using centrally scored histopathologic validation as the reference standard. MATERIALS AND METHODS This prospectively designed, cross-sectional, internal review board-approved, HIPAA-compliant study was conducted in 77 patients who had NAFLD and liver biopsy. MR imaging-PDFF was estimated from magnitude-based low flip angle multiecho gradient-recalled echo images after T2* correction and multifrequency fat modeling. Histopathologic scoring was obtained by consensus of the Nonalcoholic Steatohepatitis (NASH) Clinical Research Network Pathology Committee. Spearman correlation, additivity and variance stabilization for regression for exploring the effect of a number of potential confounders, and receiver operating characteristic analyses were performed. RESULTS Liver MR imaging-PDFF was systematically higher, with higher histologic steatosis grade (P < .001), and was significantly correlated with histologic steatosis grade (ρ = 0.69, P < .001). The correlation was not confounded by age, sex, lobular inflammation, hepatocellular ballooning, NASH diagnosis, fibrosis, or magnetic field strength (P = .65). Area under the receiver operating characteristic curves was 0.989 (95% confidence interval: 0.968, 1.000) for distinguishing patients with steatosis grade 0 (n = 5) from those with grade 1 or higher (n = 72), 0.825 (95% confidence interval: 0.734, 0.915) to distinguish those with grade 1 or lower (n = 31) from those with grade 2 or higher (n = 46), and 0.893 (95% confidence interval: 0.809, 0.977) to distinguish those with grade 2 or lower (n = 58) from those with grade 3 (n = 19). CONCLUSION MR imaging-PDFF showed promise for assessment of hepatic steatosis grade in patients with NAFLD. For validation, further studies with larger sample sizes are needed.
Collapse
Affiliation(s)
- An Tang
- Liver Imaging Group, Department of Radiology, University of California San Diego, 408 Dickinson St, San Diego, CA 92103-8226, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Assessment of Hepatic Fatty Infiltration Using Spectral Computed Tomography Imaging. J Comput Assist Tomogr 2013; 37:134-41. [DOI: 10.1097/rct.0b013e31827ddad3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Fischer MA, Raptis DA, Montani M, Graf R, Clavien PA, Nanz D, Alkadhi H, Scheffel H. Liver fat quantification by dual-echo MR imaging outperforms traditional histopathological analysis. Acad Radiol 2012; 19:1208-14. [PMID: 22841289 DOI: 10.1016/j.acra.2012.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/23/2012] [Accepted: 05/06/2012] [Indexed: 02/07/2023]
Abstract
RATIONALE AND OBJECTIVES The aim of this study was to evaluate the accuracy of dual-echo (DE) magnetic resonance imaging (MRI) with and without fat and water separation for the quantification of liver fat content (LFC) in vitro and in patients undergoing liver surgery, with comparison to histopathologic analysis. MATERIALS AND METHODS MRI was performed on a 1.5-T scanner using a three-dimensional DE MRI sequence with automated reconstruction of in-phase (IP) and out-of-phase (OP) and fat-signal-only and water-signal-only images. LFC was estimated by fat fractions from IP and OP images (MRI(IP/OP)) and from Dixon-based fat-only and water-only images (MRI(DIxON)). Seven phantoms containing a titrated mixture of liver and fat from 0% to 50% were examined. Forty-three biopsies in 22 patients undergoing liver surgery were prospectively evaluated by a pathologist by traditional determination of the cell-count fraction and by a computer-based algorithm, the latter serving as the reference standard. RESULTS In vitro, both MRI(IP/OP) and MRI(DIxON) were significantly correlated with titrated LFC (r = 0.993, P < .001), with a smaller measurement bias for MRI(IP/OP) (+2.6%) than for MRI(DIxON) (+4.5%). In vivo, both MRI(IP/OP) and MRI(DIxON) from DE MRI were correlated significantly better with computer-based histologic results (P < .001) and showed significantly smaller measurement bias (4.8% vs 21.1%) compared to histologic cell-count fraction (P < .001). Measurement bias was significantly smaller for MRI(IP/OP) than for MRI(DIxON) (P < .001). CONCLUSIONS DE MRI allows the accurate quantification of LFC in a surgical population, outperforming traditional histopathologic analysis. DE MRI without fat and water separation shows the highest accuracy and smallest measurement bias for the quantification of LFC.
Collapse
|
15
|
Fischer MA, Donati OF, Chuck N, Blume IN, Hunziker R, Alkadhi H, Nanz D. Two- versus three-dimensional dual gradient-echo MRI of the liver: a technical comparison. Eur Radiol 2012; 23:408-16. [PMID: 22865276 DOI: 10.1007/s00330-012-2614-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 07/03/2012] [Accepted: 07/08/2012] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To compare 2D spoiled dual gradient-echo (SPGR-DE) and 3D SPGR-DE with fat and water separation for the assessment of focal and diffuse fatty infiltration of the liver. METHODS A total of 227 consecutive patients (141 men; 56 ± 14 years) underwent clinically indicated liver MRI at 1.5 T including multiple-breath-hold 2D SPGR-DE and single-breath-hold 3D SPGR-DE with automatic reconstruction of fat-only images. Two readers assessed the image quality and number of fat-containing liver lesions on 2D and 3D in- and opposed-phase (IP/OP) images. Liver fat content (LFC) was quantified in 138 patients without chronic liver disease from 2D, 3D IP/OP, and 3D fat-only images. RESULTS Mean durations of 3D and 2D SPGR-DE acquisitions were 23.7 ± 2.9 and 97.2 ± 9.1 s respectively. The quality of all 2D and 3D images was rated diagnostically. Three-dimensional SPGR-DE revealed significantly more breathing artefacts resulting in lower image quality (P < 0.001); 2D and 3D IP/OP showed a similar detection rate of fat-containing lesions (P = 0.334) and similar LFC estimations (mean: +0.4 %; P = 0.048). LFC estimations based on 3D fat-only images showed significantly higher values (mean: 2.7 % + 3.5 %) than those from 2D and 3D IP/OP images (P < 0.001). CONCLUSION Three dimensional SPGR-DE performs as well as 2D SPGR-DE for the assessment of focal and diffuse fatty infiltration of liver parenchyma. The 3D SPGR-DE sequence used was quicker but more susceptible to breathing artefacts. Significantly higher LFC values are derived from 3D fat-only images than from 2D or 3D IP/OP images.
Collapse
Affiliation(s)
- Michael A Fischer
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistr. 100, 8091 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
16
|
Papakonstantinou O, Foufa K, Benekos O, Alexopoulou E, Mademli M, Balanika A, Economopoulos N, Kelekis NL. Use of fat suppression in R₂ relaxometry with MRI for the quantification of tissue iron overload in beta-thalassemic patients. Magn Reson Imaging 2012; 30:926-33. [PMID: 22495242 DOI: 10.1016/j.mri.2012.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 02/22/2012] [Accepted: 03/01/2012] [Indexed: 11/16/2022]
Abstract
PURPOSE To assess the performance and results of R(2) relaxometry using a fat-suppressed (FS) multiecho sequence and compare these to conventional R(2) relaxometry in estimating tissue iron overload. MATERIALS AND METHODS Relaxation rate values (R(2)=1/T2) of the liver, spleen, pancreas and vertebral bone marrow (VBM) were estimated in 21 patients with β-thalassemia major, using a respiratory-triggered 16-echo Carr-Purcell-Meiboom-Gill (CPMG) spin-echo sequence before (R(2)) and after (R(2) FS) the application of chemically selective fat suppression. RESULTS Hepatic and splenic R(2) FS values correlated with respective R(2) values (r=0.98 and r=0.96, P<.001), whereas correlations between R(2) FS and R(2) values for pancreas and VBM were not statistically significant. Bland-Altman plots show disagreement between R(2) and R(2) FS values, particularly for pancreas and VBM. Hepatic, pancreatic and VBM R(2) FS values correlated with serum ferritin (r=0.88, P<.001; r=0.51, P<.003; and r=0.75, P<.002, respectively). Hepatic R(2) FS values correlated with splenic R(2) FS (r=0.77, P<.03), pancreatic R(2) FS (r=0.61, P<.006) and VBM R(2) FS values (r=0.70, P<.001), whereas pancreatic R(2) FS values correlated also with VMB R(2) FS values. On the contrary, among the R(2) values of the above tissues, obtained without fat suppression, only hepatic R(2) values correlated with serum ferritin, whereas no correlation was documented between hepatic and pancreatic or VBM R(2) values. The application of fat suppression did not improve breathing or flow artifacts. CONCLUSION Application of fat suppression in the standard CPMG sequence improved the capability of MRI in noninvasive quantification of iron, particularly in lipid-rich tissues, such as vertebral bone marrow (VBM) and pancreas.
Collapse
|
17
|
MRI Steatosis Grading: Development and Initial Validation of a Color Mapping System. AJR Am J Roentgenol 2012; 198:582-8. [DOI: 10.2214/ajr.11.6729] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Young SP, Piraud M, Goldstein JL, Zhang H, Rehder C, Laforet P, Kishnani PS, Millington DS, Bashir MR, Bali DS. Assessing disease severity in Pompe disease: the roles of a urinary glucose tetrasaccharide biomarker and imaging techniques. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2012; 160C:50-8. [PMID: 22252961 DOI: 10.1002/ajmg.c.31320] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Defining disease severity in patients with Pompe disease is important for prognosis and monitoring the response to therapies. Current approaches include qualitative and quantitative assessments of the disease burden, and clinical measures of the impact of the disease on affected systems. The aims of this manuscript were to review a noninvasive urinary glucose tetrasaccharide biomarker of glycogen storage, and to discuss advances in imaging techniques for determining the disease burden in Pompe disease. The glucose tetrasaccharide, Glcα1-6Glcα1-4Glcα1-4Glc (Glc(4) ), is a glycogen-derived limit dextrin that correlates with the extent of glycogen accumulation in skeletal muscle. As such, it is more useful than traditional biomarkers of tissue damage, such as CK and AST, for monitoring the response to enzyme replacement therapy in patients with Pompe disease. Glc(4) is also useful as an adjunctive diagnostic test for Pompe disease when performed in conjunction with acid alpha-glucosidase activity measurements. Review of clinical records of 208 patients evaluated for Pompe disease by this approach showed Glc(4) had 94% sensitivity and 84% specificity for Pompe disease. We propose Glc(4) is useful as an overall measure of disease burden, but does not provide information on the location and distribution of excess glycogen accumulation. In this manuscript we also review magnetic resonance spectroscopy and imaging techniques as alternative, noninvasive tools for quantifying glycogen and detailing changes, such as fibrofatty muscle degeneration, in specific muscle groups in Pompe disease. These techniques show promise as a means of monitoring disease progression and the response to treatment in Pompe disease. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sarah P Young
- DUHS Biochemical Genetics Lab, Durham, NC 27713, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Guillerman RP. Newer CT applications and their alternatives: what is appropriate in children? Pediatr Radiol 2011; 41 Suppl 2:534-48. [PMID: 21847736 DOI: 10.1007/s00247-011-2163-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/18/2011] [Accepted: 05/25/2011] [Indexed: 12/20/2022]
Abstract
Innovations in image acquisition and reconstruction technologies have greatly expanded the range of CT applications available in the routine clinical setting. CT images of sub-millimeter resolution can now be acquired of entire body regions in a few seconds or even sub-second time, allowing depiction of fine anatomical detail uncompromised by motion artifact. With sophisticated visualization software, image data can be processed into multiplanar, volume-rendered, cine and other formats to better display anatomical abnormalities and facilitate newer applications such as CT angiography, enterography, urography, tracheobronchography and cardiac CT. Newer applications including dual-energy material decomposition CT are furthering the transition of CT from a purely morphological to a combined anatomical, functional and metabolic imaging technique. These newer applications have largely been pioneered in adult populations, and heightened concern of the risk of carcinogenesis from ionizing radiation tempers dissemination of their use in children. Similar information can often be gleaned from alternative imaging modalities without ionizing radiation exposure, such as MRI and US, and what is most appropriate in children will depend on relative diagnostic efficacy, cost, availability and local expertise.
Collapse
Affiliation(s)
- R Paul Guillerman
- Department of Pediatric Radiology, Baylor College of Medicine, Texas Children's Hospital, 6701 Fannin St., Suite 470, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Bashir MR, Dale BM, Merkle EM, Boll DT. Automated liver sampling using a gradient dual-echo Dixon-based technique. Magn Reson Med 2011; 67:1469-77. [DOI: 10.1002/mrm.23123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 06/16/2011] [Accepted: 07/08/2011] [Indexed: 12/13/2022]
|
21
|
Martí-Bonmatí L, Alberich-Bayarri A, Sánchez-González J. Overload hepatitides: quanti-qualitative analysis. ACTA ACUST UNITED AC 2011; 37:180-7. [DOI: 10.1007/s00261-011-9762-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Abstract
Clinical hepatobiliary magnetic resonance (MR) imaging continues to evolve at a fast rate. However, three basic requirements must still be satisfied if novel high-field MR imaging techniques are to be included in the hepatobiliary imaging routine: improvement of parenchymal contrast, suppression of respiratory motion artifact, and anatomic coverage of the entire hepatobiliary system. This article outlines the various arenas involved in MR imaging of the hepatobiliary system at 3 Tesla (T) compared with 1.5 T by (1) highlighting magnetic field-dependent MR contrast phenomena that contribute to the overall appearance of high-field hepatobiliary imaging; (2) summarizing the biodistributions of different gadolinium chelates used as MR contrast agents and their effectiveness regarding the static magnetic field; (3) showing the implementation of advanced imaging techniques such as three-dimensional acquisition schemes and parallel acceleration techniques used in T1-, T2-, and diffusion-weighted hepatobiliary imaging; and (4) addressing artifact mechanisms exacerbated by, or originating from, increase of the static magnetic field.
Collapse
|
23
|
Bashir MR, Merkle EM, Smith AD, Boll DT. Hepatic MR imaging for in vivo differentiation of steatosis, iron deposition and combined storage disorder: single-ratio in/opposed phase analysis vs. dual-ratio Dixon discrimination. Eur J Radiol 2011; 81:e101-9. [PMID: 21330083 DOI: 10.1016/j.ejrad.2011.01.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 01/05/2011] [Accepted: 01/17/2011] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To assess whether in vivo dual-ratio Dixon discrimination can improve detection of diffuse liver disease, specifically steatosis, iron deposition and combined disease over traditional single-ratio in/opposed phase analysis. METHODS Seventy-one patients with biopsy-proven (17.7 ± 17.0 days) hepatic steatosis (n = 16), iron deposition (n = 11), combined deposition (n = 3) and neither disease (n = 41) underwent MR examinations. Dual-echo in/opposed-phase MR with Dixon water/fat reconstructions were acquired. Analysis consisted of: (a) single-ratio hepatic region-of-interest (ROI)-based assessment of in/opposed ratios; (b) dual-ratio hepatic ROI assessment of in/opposed and fat/water ratios; (c) computer-aided dual-ratio assessment evaluating all hepatic voxels. Disease-specific thresholds were determined; statistical analyses assessed disease-dependent voxel ratios, based on single-ratio (a) and dual-ratio (b and c) techniques. RESULTS Single-ratio discrimination succeeded in identifying iron deposition (I/O(Ironthreshold)<0.88) and steatosis (I/O(Fatthreshold>1.15)) from normal parenchyma, sensitivity 70.0%; it failed to detect combined disease. Dual-ratio discrimination succeeded in identifying abnormal hepatic parenchyma (F/W(Normalthreshold)>0.05), sensitivity 96.7%; logarithmic functions for iron deposition (I/O(Irondiscriminator)<e((0.01-F/W(Iron))/0.48)) and for steatosis (I/O(Fatdiscriminator)>e((F/W(Fat)-0.01)/0.48)) differentiated combined from isolated diseases, sensitivity 100.0%; computer-aided dual-ratio analysis was comparably sensitive but less specific, 90.2% vs. 97.6%. CONCLUSION MR two-point-Dixon imaging using dual-ratio post-processing based on in/opposed and fat/water ratios improved in vivo detection of hepatic steatosis, iron deposition, and combined storage disease beyond traditional in/opposed analysis.
Collapse
Affiliation(s)
- Mustafa R Bashir
- Department of Radiology, Duke University Medical Center, DUMC 3808, Durham, NC 27710, United States
| | | | | | | |
Collapse
|