1
|
Fuentes M, Sales A, Charquero-Ballester M, García-Martí G, Meléndez JC, Espert R, Scheel M, Bauknecht HC, Simon K, Köpstein U, Gebauer S, Algarabel S. Impaired recollection and initially preserved familiarity in a patient with bilateral fornix transection following third ventricle colloid cyst removal: A two-year follow-up study. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:994-1006. [PMID: 35917584 DOI: 10.1080/23279095.2022.2104162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Recognition memory is widely accepted as a dual process-based model, namely familiarity and recollection. However, the location of their specific neurobiological substrates remains unclear. Similar to hippocampal damage, fornix damage has been associated with recollection memory but not familiarity memory deficits. To understand the neural basis of recognition memory, determining the importance of the fornix and its hippocampal connections is essential. METHODS Recognition memory was examined in a 45-year-old male who underwent a complete bilateral fornix section following the removal of a third ventricle colloid cyst. The application of familiarity and recollection for recognition memory decisions was investigated via an immediate and delayed associative recognition test and an immediate and delayed forced-choice task in the patient and a control group (N = 15) over a two-year follow-up period. Complete demographic, neuropsychological, neuropsychiatric, and neuroradiological characterizations of this patient were performed. RESULTS Persistent immediate and delayed verbal recollection memory deficits were observed in the patient. Moreover, delayed familiarity-based recognition memory declined gradually over the follow-up period, immediate familiarity-based recognition memory was unaffected, and reduced non-verbal memory improved. CONCLUSION The present findings support models that the extended hippocampal system, including the fornices, does not appear to play a role in familiarity memory but is particularly important for recollection memory. Moreover, our study suggests that bilateral fornix transection may be associated with relatively functional recovery of non-verbal memory.
Collapse
Affiliation(s)
- Manuel Fuentes
- Department of Geriatrics and Day Centre, Geriatric Orthopaedic Surgery Centre, Caritas-Klinik Dominikus, Berlin-Reinickendorf, Berlin, Germany
| | - Alicia Sales
- Department of Psychology, University of Valencia, Valencia, Spain
| | | | - Gracián García-Martí
- CIBER of Mental Health (CIBERSAM), Hospital Clínico Universitario de Valencia, Valencia, Spain
- Quirónsalud Hospital, Valencia, Spain
| | | | - Raul Espert
- Department of Psychology, University of Valencia, Valencia, Spain
| | - Michael Scheel
- Department of Neuroradiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hans-Christian Bauknecht
- Department of Neuroradiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katja Simon
- Department of Geriatrics and Day Centre, Geriatric Orthopaedic Surgery Centre, Caritas-Klinik Dominikus, Berlin-Reinickendorf, Berlin, Germany
| | - Uta Köpstein
- Department of Geriatrics and Day Centre, Geriatric Orthopaedic Surgery Centre, Caritas-Klinik Dominikus, Berlin-Reinickendorf, Berlin, Germany
| | - Sibylle Gebauer
- Department of Geriatrics and Day Centre, Geriatric Orthopaedic Surgery Centre, Caritas-Klinik Dominikus, Berlin-Reinickendorf, Berlin, Germany
| | | |
Collapse
|
2
|
Bobba PS, Weber CF, Higaki ARA, Mukherjee P, Scheinost D, Constable RT, Ment L, Taylor SN, Payabvash S. Impact of postnatal weight gain on brain white matter maturation in very preterm infants. J Neuroimaging 2023; 33:991-1002. [PMID: 37483073 PMCID: PMC10800683 DOI: 10.1111/jon.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Very preterm infants (VPIs, <32 weeks gestational age at birth) are prone to long-term neurological deficits. While the effects of birth weight and postnatal growth on VPIs' neurological outcome are well established, the neurobiological mechanism behind these associations remains elusive. In this study, we utilized diffusion tensor imaging (DTI) to characterize how birth weight and postnatal weight gain influence VPIs' white matter (WM) maturation. METHODS We included VPIs with complete birth and postnatal weight data in their health record, and DTI scan as part of their predischarge Magnetic Resonance Imaging (MRI). We conducted voxel-wise general linear model and tract-based regression analyses to explore the impact of birth weight and postnatal weight gain on WM maturation. RESULTS We included 91 VPIs in our analysis. After controlling for gestational age at birth and time between birth and scan, higher birth weight Z-scores were associated with DTI markers of more mature WM tracts, most prominently in the corpus callosum and sagittal striatum. The postnatal weight Z-score changes over the first 4 weeks of life were also associated with increased maturity in these WM tracts, when controlling for gestational age at birth, birth weight Z-score, and time between birth and scan. CONCLUSIONS In VPIs, birth weight and post-natal weight gain are associated with markers of brain WM maturation, particularly in the corpus callosum, which can be captured on discharge MRI. These neuroimaging metrics can serve as potential biomarkers for the early effects of nutritional interventions on VPIs' brain development.
Collapse
Affiliation(s)
- Pratheek S Bobba
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Clara F Weber
- Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, Lübeck University, Lübeck, Germany
| | - Adrian R Acuna Higaki
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, Bioengineering, University of California, San Francisco, San Francisco, California, USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Laura Ment
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sarah N Taylor
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Seyedmehdi Payabvash
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Dobbertin M, Blair KS, Carollo E, Blair JR, Dominguez A, Bajaj S. Neuroimaging alterations of the suicidal brain and its relevance to practice: an updated review of MRI studies. Front Psychiatry 2023; 14:1083244. [PMID: 37181903 PMCID: PMC10174251 DOI: 10.3389/fpsyt.2023.1083244] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Suicide is a leading cause of death in the United States. Historically, scientific inquiry has focused on psychological theory. However, more recent studies have started to shed light on complex biosignatures using MRI techniques, including task-based and resting-state functional MRI, brain morphometry, and diffusion tensor imaging. Here, we review recent research across these modalities, with a focus on participants with depression and Suicidal Thoughts and Behavior (STB). A PubMed search identified 149 articles specific to our population of study, and this was further refined to rule out more diffuse pathologies such as psychotic disorders and organic brain injury and illness. This left 69 articles which are reviewed in the current study. The collated articles reviewed point to a complex impairment showing atypical functional activation in areas associated with perception of reward, social/affective stimuli, top-down control, and reward-based learning. This is broadly supported by the atypical morphometric and diffusion-weighted alterations and, most significantly, in the network-based resting-state functional connectivity data that extrapolates network functions from well validated psychological paradigms using functional MRI analysis. We see an emerging picture of cognitive dysfunction evident in task-based and resting state fMRI and network neuroscience studies, likely preceded by structural changes best demonstrated in morphometric and diffusion-weighted studies. We propose a clinically-oriented chronology of the diathesis-stress model of suicide and link other areas of research that may be useful to the practicing clinician, while helping to advance the translational study of the neurobiology of suicide.
Collapse
Affiliation(s)
- Matthew Dobbertin
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
- Child and Adolescent Psychiatric Inpatient Center, Boys Town National Research Hospital, Boys Town, NE, United States
- *Correspondence: Matthew Dobbertin,
| | - Karina S. Blair
- Program for Trauma and Anxiety in Children (PTAC), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Erin Carollo
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL, United States
| | - James R. Blair
- Child and Adolescent Mental Health Centre, Mental Health Services, Copenhagen, Denmark
| | - Ahria Dominguez
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Sahil Bajaj
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| |
Collapse
|
4
|
Lam K, Nguyen PT, Anh LV, Lien T. Blended Motor-Sensory Nerve Bundles on Diffused Tensor Imaging: Evidence of Brain Plasticity in a Patient with 36-year Sequelae from Encephalitis. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Brain plasticity refers to the extraordinary ability of the brain to modify its structure and function following changes within the body or in the external environment. However, it is not easy to find it on non-invasive imaging modality.
CASE REPORT: In this article, we report the case of a 36-year-old male patient with sequelae of encephalitis. The patient had general epilepsy with multiple hospital admissions. MRI 3.0 Tesla showed his cerebral hemispheres were asymmetrical both morphologically and tractographically; there was a scar at the right temporo-occipital region, and an atrophy of the right temporal lobe, hippocampus and pontine. DTI reconstruction showed asymmetrical cortico-spinal and thalamo-cortical tracts with posterior thalamo-cortical tract was partly damaged by the scar. Blended motor-sensory nerve bundles were observed only on the left side of the patient’s brain but not on the right or healthy subjects. DTI quantification showed the lower line number, lower FA and higher ADC in the patient compared to healthy subjects and within the patient with decreased functionality on the side of the scar.
CONCLUSION: Non-invasive DTI with 3D image reconstruction on the patient showed evidence of brain plasticity appeared on cortico-spinal and thalamo-cortical tracts and can inform diagnosis and treatment strategies.
Collapse
|
5
|
Bazydlo A, Zammit M, Wu M, Dean D, Johnson S, Tudorascu D, Cohen A, Cody K, Ances B, Laymon C, Klunk W, Zaman S, Handen B, Alexander A, Christian B, Hartley S. White matter microstructure associations with episodic memory in adults with Down syndrome: a tract-based spatial statistics study. J Neurodev Disord 2021; 13:17. [PMID: 33879062 PMCID: PMC8059162 DOI: 10.1186/s11689-021-09366-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/08/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Nearly all persons with Down syndrome will show pathology of Alzheimer's disease in their 40s. There is a critical need for studies to identify early biomarkers of these various pathological changes of Alzheimer's disease in the Down syndrome population and understand the relationship of these biomarkers to cognitive symptoms in order to inform clinical trials. Although Alzheimer's disease is often considered a disease of gray matter, white matter degeneration has been documented during the preclinical stage of Alzheimer's disease. The current study examined the association between diffusion tensor imaging (DTI) measures of white matter microstructure and episodic memory performance in 52 adults with Down syndrome. METHODS Seventy (N = 70) participants (M = 40.13, SD = 7.77 years) received baseline scans as part of the Neurodegeneration in Aging Down Syndrome (NiAD) study at two imaging facilities (36 at the University of Wisconsin-Madison [UW-Madison] and 34 at the University of Pittsburgh Medical Center [UPMC]). All participants had genetically confirmed trisomy 21. Fifty-two (N = 52) participants remained after QC. The DTI measures, fractional anisotropy (FA) and mean diffusivity (MD), were calculated for each participant. A combined measure of episodic memory was generated by summing the z-scores of (1) Free and Cued Recall test and (2) Rivermead Behavioural Memory Test for Children Picture Recognition. The DTI data were projected onto a population-derived FA skeleton and tract-based spatial statistics analysis was conducted using the FSL tool PALM to calculate Pearson's r values between FA and MD with episodic memory. RESULTS A positive correlation of episodic memory with FA and a negative correlation of episodic memory and MD in the major association white matter tracts were observed. Results were significant (p < 0.05) after correction for chronological age, imaging site, and premorbid cognitive ability. CONCLUSION These findings suggest that white matter degeneration may be implicated in early episodic memory declines prior to the onset of dementia in adults with Down syndrome. Further, our findings suggest a coupling of episodic memory and white matter microstructure independent of chronological age.
Collapse
Affiliation(s)
- Austin Bazydlo
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| | - Matthew Zammit
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Minjie Wu
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Douglas Dean
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Sterling Johnson
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Dana Tudorascu
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ann Cohen
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Karly Cody
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Beau Ances
- Washington University of St. Louis, St. Louis, MO, USA
| | - Charles Laymon
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William Klunk
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shahid Zaman
- Cambridge Intellectual and Developmental Disabilities Research Group, University of Cambridge, Cambridge, UK
| | - Benjamin Handen
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Andrew Alexander
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Bradley Christian
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Sigan Hartley
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- School of Human Ecology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
6
|
Rollins NK. Using ADC to Study the Brain in Early Childhood: Not for the Uninitiated. Radiology 2020; 298:425-426. [PMID: 33290175 DOI: 10.1148/radiol.2020204158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nancy K Rollins
- From the Department of Radiology, Children's Medical Center, 1935 Motor St, Dallas, TX 75235
| |
Collapse
|
7
|
Jin Z, Li Z. Clinical Application of Diffusion Tensor Imaging in Diagnosis and Prognosis of Hemifacial Spasm. World Neurosurg 2020; 145:e14-e20. [PMID: 32791215 DOI: 10.1016/j.wneu.2020.08.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The purpose of this study was to test the application of diffusion tensor imaging (DTI) in patients with hemifacial spasm (HFS), to make more accurate diagnoses before surgery and to judge the degree of recovery more accurately after surgical microvascular decompression. To our knowledge, this is the first study to test the validity of DTI for diagnosis and postsurgical evaluation of HFS. METHODS We included 40 patients with HFS who underwent DTI scanning before microvascular decompression. They were followed up with DTI 6 months and 1 year after surgery. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were obtained and compared. RESULTS In patients with HFS, the FA value of the affected side (mean FA, 0.46 ± 0.03) was significantly lower than that of the healthy side (mean FA, 0.43 ± 0.04; P < 0.05), and the ADC value of the affected side (mean FA, 1.60 ± 0.14) was significantly higher than that of the healthy side (mean ADC, 1.50 ± 0.12; P < 0.05). Compared with those before surgery, the FA values of both follow-up patients increased significantly, whereas their ADC values decreased significantly. CONCLUSIONS The use of DTI improves diagnosis and treatment of HFS.
Collapse
Affiliation(s)
- Zhuoru Jin
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Zhipeng Li
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
8
|
Correlation between diffusion tensor imaging measures and the reading and cognitive performance of Arabic readers: dyslexic children perspective. Neuroradiology 2020; 62:525-531. [PMID: 31955236 DOI: 10.1007/s00234-020-02368-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/10/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE To investigate the correlation between the diffusion tensor imaging (DTI) measures and the reading, spelling, writing, rapid naming, memory, and motor abilities in Arabic dyslexic children. This could verify the influence of possible white matter alterations on the abilities of those children. METHODS Twenty native Arabic-speaking children with dyslexia (15 males and 5 females; 8.2 years ± 1) underwent DTI of the brain on 1.5 T scanner. Diffusion-weighted images were acquired in 32 noncollinear direction. Tractography of the arcuate fasciculus (AF) was performed. Region of interest (ROI)-based approach was also used. Regions encompass superior longitudinal fasciculus (SLF), anterior and superior corona radiata (CR), and posterior limb of internal capsule (PLIC) were analyzed. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were measured. The aptitudes of those children were evaluated by the dyslexia assessment test. These abilities were statistically correlated with the FA and ADC of the AF and other ROIs. RESULTS The reduction of FA of right AF was related to worse overall reading and related abilities performance. The ADC of right SLF was negatively correlated with memory abilities. The ADC of right PLIC was positively correlated with writing performance. Other relations were also found. CONCLUSION White matter microstructural DTI measurements in the right AF, right PLIC, SLF, and left anterior and superior CR are correlated to reading, spelling, writing, memory, and rapid naming abilities of the participants. The DTI measures could be promising regarding their use as a biomarker for follow-up in developmental dyslexia.
Collapse
|
9
|
Zöllei L, Jaimes C, Saliba E, Grant PE, Yendiki A. TRActs constrained by UnderLying INfant anatomy (TRACULInA): An automated probabilistic tractography tool with anatomical priors for use in the newborn brain. Neuroimage 2019; 199:1-17. [PMID: 31132451 PMCID: PMC6688923 DOI: 10.1016/j.neuroimage.2019.05.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 10/26/2022] Open
Abstract
The ongoing myelination of white-matter fiber bundles plays a significant role in brain development. However, reliable and consistent identification of these bundles from infant brain MRIs is often challenging due to inherently low diffusion anisotropy, as well as motion and other artifacts. In this paper we introduce a new tool for automated probabilistic tractography specifically designed for newborn infants. Our tool incorporates prior information about the anatomical neighborhood of white-matter pathways from a training data set. In our experiments, we evaluate this tool on data from both full-term and prematurely born infants and demonstrate that it can reconstruct known white-matter tracts in both groups robustly, even in the presence of differences between the training set and study subjects. Additionally, we evaluate it on a publicly available large data set of healthy term infants (UNC Early Brain Development Program). This paves the way for performing a host of sophisticated analyses in newborns that we have previously implemented for the adult brain, such as pointwise analysis along tracts and longitudinal analysis, in both health and disease.
Collapse
Affiliation(s)
- Lilla Zöllei
- Massachusetts General Hospital, Boston, United States.
| | | | | | | | | |
Collapse
|
10
|
Shi J, Yang S, Wang J, Huang S, Yao Y, Zhang S, Zhu W, Shao J. Detecting normal pediatric brain development with diffusional kurtosis imaging. Eur J Radiol 2019; 120:108690. [PMID: 31605964 DOI: 10.1016/j.ejrad.2019.108690] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 09/24/2019] [Indexed: 11/30/2022]
Abstract
PURPOSE To characterise the pattern of change of diffusional kurtosis imaging (DKI) parameters (including kurtosis and diffusion parameters) in both white matter and gray matter in normal brain development with a large sample of subjects from term-born neonates to 14-years old children. METHODS Two hundred and eighteen normal children (136 male, 82 female) underwent conventional magnetic resonance imaging and DKI. Regions of interest (ROIs) were placed in 7 white matter areas and 4 gray matter areas. Then the DKI-derived parameters were automatically calculated, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Da), radial diffusivity (Dr), mean kurtosis (MK), axial kurtosis (Ka) and radial kurtosis (Kr). The correlation between the DKI parameters and ages were analyzed using nonlinear fit, and the rate of parameter change was computed compared to the baseline value of the neonates. RESULTS For all ROIs in the white matter and gray matter, the FA, MK, Kr, Ka values increased with age, while the MD and Dr values decreased with age. The correlations were good to excellent, which changed rapidly within the first 2 years and relatively slowly after 2 years. The Da values in peripheral white matters and some gray matter structures (caudate nucleus and putamen) decreased with age. The amplitude of kurtosis parameters variation was greater than that of the diffusion parameters in both white matter and gray matter. CONCLUSIONS The DKI parameters correlated well with age, and kurtosis parameters showed a potential advantage in detecting the normal brain development of children.
Collapse
Affiliation(s)
- Jingjing Shi
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaowei Yang
- Department of Radiology, Children's Hospital, Wuhan, China
| | - Jian Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sui Huang
- Department of Radiology, Children's Hospital, Wuhan, China
| | - Yihao Yao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jianbo Shao
- Department of Radiology, Children's Hospital, Wuhan, China.
| |
Collapse
|
11
|
Quantitative MR neurography of brachial plexus lesions based on diffusivity measurements. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2018. [DOI: 10.1016/j.ejrnm.2018.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
12
|
Zheng H, Niu S, Zhao H, Li S, Jiao J. Donepezil improves the cognitive impairment in a tree shrew model of Alzheimer's disease induced by amyloid-β 1-40 via activating the BDNF/TrkB signal pathway. Metab Brain Dis 2018; 33:1961-1974. [PMID: 30105614 DOI: 10.1007/s11011-018-0303-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/03/2018] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder which can contribute to memory loss and cognitive damage in the elderly; moreover, evidence from clinical and animal studies demonstrated that AD always exhibit severe cognitive deficits. However, the effects of donepezil medications on cognition are controversial. Additionally, it is unclear whether donepezil can protect neurons to improve cognitive function through the brain-derived neurotropic factor (BDNF)/tyrosine receptor kinase B (TrkB) signalling pathway in the tree shrew (TS), which has a closer evolutionary relationship to primates than rodents. Here, we designed a study on an amyloid-β1-40 (Aβ1-40)-induced TS model of AD and investigated the molecular mechanism by which donepezil protects neurons and improves cognitive function through activating the BDNF/TrkB signalling pathway. The results showed that donepezil could rescue Aβ1-40-induced spatial cognition deficits, and reverse Aβ1-40-induced temporal horn along with ADC enlargement in the TS brain. Meanwhile, it suppressed Aβ1-40-induced neuronal damage and loss of body weight. Intriguingly, donepezil could increase the choline acetyl transferase (ChAT) expression level and reduce the fibrillary acid protein (GFAP) expression level in the hippocampus and cortex of TS. Additionally, donepezil significantly upregulated the expression level of BDNF, as well as the phosphorylated level of TrkB. These results suggested that donepezil could protect neurocytes from senility and ameliorate learning and memory impairment in the TS model of AD, which appeared to be through regulating the cholinergic system and inhibiting the BDNF/TrkB-dependent signalling pathway. Moreover, the study underlines the potency of TS to be a novel animal model for research on AD, and it deserves intensive attention.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, 650500, China
| | - Shiwei Niu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Hongbin Zhao
- Department of Emergency Medicine, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Shude Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China.
| | - Jianlin Jiao
- Technology Transfer Center, Kunming Medical University, Kunming, 650031, China.
| |
Collapse
|
13
|
Olivo G, Latini F, Wiemerslage L, Larsson EM, Schiöth HB. Disruption of Accumbens and Thalamic White Matter Connectivity Revealed by Diffusion Tensor Tractography in Young Men with Genetic Risk for Obesity. Front Hum Neurosci 2018. [PMID: 29520227 PMCID: PMC5826967 DOI: 10.3389/fnhum.2018.00075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Neurovascular coupling is associated with white matter (WM) structural integrity, and it is regulated by specific subtypes of dopaminergic receptors. An altered activity of such receptors, highly expressed in reward-related regions, has been reported in carriers of obesity-risk alleles of the fat mass and obesity associated (FTO) gene. Among the reward-related regions, the thalamus and the nucleus accumbens are particularly vulnerable to blood pressure dysregulation due to their peculiar anatomo-vascular characteristics, and have been consistently reported to be altered in early-stage obesity. We have thus hypothesized that a disruption in thalamus and nucleus accumbens WM microstructure, possibly on neurovascular basis, could potentially be a predisposing factor underlying the enhanced risk for obesity in the risk-allele carriers. Methods: We have tested WM integrity in 21 male participants genotyped on the FTO risk single nucleotide polymorphisms (SNP) rs9939609, through a deterministic tractography analysis. Only homozygous participants (9 AA, 12 TT) were included. 11 tracts were selected and categorized as following according to our hypothesis: “risk tracts”, “obesity-associated tracts”, and a control tract (forcpes major). We investigated whether an association existed between genotype, body mass index (BMI) and WM microstructural integrity in the “risk-tracts” (anterior thalamic radiation and accumbofrontal fasciculus) compared to other tracts. Moreover, we explored whether WM diffusivity could be related to specific personality traits in terms of punishment and reward sensitivity, as measure by the BIS/BAS questionnaire. Results: An effect of the genotype and an interaction effect of genotype and BMI were detected on the fractional anisotropy (FA) of the “risk tracts”. Correlations between WM diffusivity parameters and measures of punishment and reward sensitivity were also detected in many WM tracts of both networks. Conclusions: A disruption of the structural connectivity from the nucleus accumbens and the thalamus might occur early in carriers of the FTO AA risk-allele, and possibly act as a predisposing factor to the development of obesity.
Collapse
Affiliation(s)
- Gaia Olivo
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Francesco Latini
- Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Lyle Wiemerslage
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Elna-Marie Larsson
- Neuroradiology, Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Prunas C, Delvecchio G, Perlini C, Barillari M, Ruggeri M, Altamura AC, Bellani M, Brambilla P. Diffusion imaging study of the Corpus Callosum in bipolar disorder. Psychiatry Res Neuroimaging 2018; 271:75-81. [PMID: 29129544 DOI: 10.1016/j.pscychresns.2017.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 09/06/2017] [Accepted: 11/02/2017] [Indexed: 01/28/2023]
Abstract
Structural and diffusion imaging studies have provided some evidence of abnormal organization of Corpus Callosum (CC) in Bipolar Disorder (BD). Therefore, by using Diffusion Weighted Imaging (DWI), which allows to build subtle prediction models of fiber integrity for white matter (WM) tracts, this study aims to further explore the microstructure integrity of CC in BD patients compared to matched healthy controls. Twenty-four chronic patients with BD and 35 healthy controls were included in the study. Circular regions of interest were placed, on diffusion images, in the left and right side of callosal regions (i.e. rostrum/genu, anterior body, posterior body, splenium) and the Apparent Diffusion Coefficient (ADC) was then calculated. Significantly increased ADC values were found in right anterior body and in right splenium in BD patients compared to healthy controls (all p < 0.05, Bonferroni corrected). In this study, we found abnormally increased ADC callosal values in BD suggesting microstructural anomalies specifically in the right hemisphere. Interestingly, this finding further supports the presence of an altered inter-hemispheric communication between frontal and temporo-parietal association areas in patients with BD, which may ultimately result in clinical symptoms and cognitive deficits.
Collapse
Affiliation(s)
- Cecilia Prunas
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | - Cinzia Perlini
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Psychology, University of Verona, Verona, Italy; InterUniversity Centre for Behavioural Neurosciences, University of Verona, Verona, Italy
| | - Marco Barillari
- Section of Neurology, Department of Neurological and Movement Sciences, University Hospital of Verona, Verona, Italy
| | | | - A Carlo Altamura
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Marcella Bellani
- InterUniversity Centre for Behavioural Neurosciences, University of Verona, Verona, Italy; Section of Psychiatry, AOUI Verona, Verona, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Department of Psychiatry and Behavioural Neurosciences, University of Texas at Houston, TX, USA.
| |
Collapse
|
15
|
Martín Noguerol T, Barousse R, Socolovsky M, Luna A. Quantitative magnetic resonance (MR) neurography for evaluation of peripheral nerves and plexus injuries. Quant Imaging Med Surg 2017; 7:398-421. [PMID: 28932698 DOI: 10.21037/qims.2017.08.01] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Traumatic conditions of peripheral nerves and plexus have been classically evaluated by morphological imaging techniques and electrophysiological tests. New magnetic resonance imaging (MRI) studies based on 3D fat-suppressed techniques are providing high accuracy for peripheral nerve injury evaluation from a qualitative point of view. However, these techniques do not provide quantitative information. Diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI) are functional MRI techniques that are able to evaluate and quantify the movement of water molecules within different biological structures. These techniques have been successfully applied in other anatomical areas, especially in the assessment of central nervous system, and now are being imported, with promising results for peripheral nerve and plexus evaluation. DWI and DTI allow performing a qualitative and quantitative peripheral nerve analysis, providing valuable pathophysiological information about functional integrity of these structures. In the field of trauma and peripheral nerve or plexus injury, several derived parameters from DWI and DTI studies such as apparent diffusion coefficient (ADC) or fractional anisotropy (FA) among others, can be used as potential biomarkers of neural damage providing information about fiber organization, axonal flow or myelin integrity. A proper knowledge of physical basis of these techniques and their limitations is important for an optimal interpretation of the imaging findings and derived data. In this paper, a comprehensive review of the potential applications of DWI and DTI neurographic studies is performed with a focus on traumatic conditions, including main nerve entrapment syndromes in both peripheral nerves and brachial or lumbar plexus.
Collapse
Affiliation(s)
| | - Rafael Barousse
- Peripheral Nerve and Plexus Department, Centro Rossi, Buenos Aires, Argentina
| | - Mariano Socolovsky
- Peripheral Nerve and Plexus Surgery Unit, Department of Neurosurgery, University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Antonio Luna
- MRI Unit, Neuroradiology Section, Clínica Las Nieves, SERCOSA, Health Time, Jaén, Spain.,Department of Radiology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
16
|
Ou Y, Zöllei L, Retzepi K, Castro V, Bates SV, Pieper S, Andriole KP, Murphy SN, Gollub RL, Grant PE. Using clinically acquired MRI to construct age-specific ADC atlases: Quantifying spatiotemporal ADC changes from birth to 6-year old. Hum Brain Mapp 2017; 38:3052-3068. [PMID: 28371107 PMCID: PMC5426959 DOI: 10.1002/hbm.23573] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 12/19/2022] Open
Abstract
Diffusion imaging is critical for detecting acute brain injury. However, normal apparent diffusion coefficient (ADC) maps change rapidly in early childhood, making abnormality detection difficult. In this article, we explored clinical PACS and electronic healthcare records (EHR) to create age-specific ADC atlases for clinical radiology reference. Using the EHR and three rounds of multiexpert reviews, we found ADC maps from 201 children 0-6 years of age scanned between 2006 and 2013 who had brain MRIs with no reported abnormalities and normal clinical evaluations 2+ years later. These images were grouped in 10 age bins, densely sampling the first 1 year of life (5 bins, including neonates and 4 quarters) and representing the 1-6 year age range (an age bin per year). Unbiased group-wise registration was used to construct ADC atlases for 10 age bins. We used the atlases to quantify (a) cross-sectional normative ADC variations; (b) spatiotemporal heterogeneous ADC changes; and (c) spatiotemporal heterogeneous volumetric changes. The quantified age-specific whole-brain and region-wise ADC values were compared to those from age-matched individual subjects in our study and in multiple existing independent studies. The significance of this study is that we have shown that clinically acquired images can be used to construct normative age-specific atlases. These first of their kind age-specific normative ADC atlases quantitatively characterize changes of myelination-related water diffusion in the first 6 years of life. The quantified voxel-wise spatiotemporal ADC variations provide standard references to assist radiologists toward more objective interpretation of abnormalities in clinical images. Our atlases are available at https://www.nitrc.org/projects/mgh_adcatlases. Hum Brain Mapp 38:3052-3068, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yangming Ou
- Psychiatric Neuroimaging, Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusetts
- Laboratory for Computational NeuroimagingAthinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusetts
- Quantitative Tumor Imaging at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusetts
- Fetal‐Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusetts
| | - Lilla Zöllei
- Laboratory for Computational NeuroimagingAthinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusetts
| | - Kallirroi Retzepi
- Psychiatric Neuroimaging, Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusetts
- Laboratory for Computational NeuroimagingAthinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusetts
| | - Victor Castro
- Research Computing, Partners Healthcare, 1 Constitution CenterCharlestownMassachusetts
- Laboratory of Computer ScienceMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusetts
| | - Sara V. Bates
- Division of Newborn Medicine, Department of PediatricsMassachusetts General Hospital for Children, Harvard Medical SchoolBostonMassachusetts
| | | | - Katherine P. Andriole
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusetts
| | - Shawn N. Murphy
- Research Computing, Partners Healthcare, 1 Constitution CenterCharlestownMassachusetts
- Laboratory of Computer ScienceMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusetts
| | - Randy L. Gollub
- Psychiatric Neuroimaging, Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusetts
- Laboratory for Computational NeuroimagingAthinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusetts
| | - Patricia Ellen Grant
- Fetal‐Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusetts
| |
Collapse
|
17
|
Evolution of diffusion tensor imaging parameters after acute subarachnoid haemorrhage: a prospective cohort study. Neuroradiology 2016; 59:13-21. [DOI: 10.1007/s00234-016-1774-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/06/2016] [Indexed: 11/26/2022]
|
18
|
Soun JE, Liu MZ, Cauley KA, Grinband J. Evaluation of neonatal brain myelination using the T1- and T2-weighted MRI ratio. J Magn Reson Imaging 2016; 46:690-696. [DOI: 10.1002/jmri.25570] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 11/01/2016] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jennifer E. Soun
- Department of Radiology; Columbia University Medical Center; New York New York USA
| | - Michael Z. Liu
- Department of Radiology; Columbia University Medical Center; New York New York USA
| | - Keith A. Cauley
- Department of Radiology; Geisinger Medical Center; Danville Pennsylvania USA
| | - Jack Grinband
- Department of Radiology; Columbia University Medical Center; New York New York USA
| |
Collapse
|
19
|
Min H, Xu F, Gu R, Han X, Wang A, Liu K. Potential diagnostic role of diffusion tensor imaging in early-stage osteonecrosis of the femoral head. Exp Ther Med 2016; 12:3347-3352. [PMID: 27882161 DOI: 10.3892/etm.2016.3787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/08/2016] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to explore the potential diagnostic role of diffusion tensor magnetic resonance imaging (DTI) in the early stage of modified corticosteroid-induced osteonecrosis of the femoral head (ONFH). A total of 20 beagles were randomly classified (1:1) into either an experimental group (LM), which were intramuscularly injected with lipopolysaccharide (LPS) and methylprednisolone (MPS) on three consecutive days, or control (CON) group, which were injected with saline. Magnetic resonance imaging (MRI) and DTI were performed at pre-induction and 8 and 12 weeks post-induction. Apparent diffusion coefficient (ADC) values in the range of interest in the femoral head were quantified using DTI. Proximal femora were examined for ONFH at 8 and 12 weeks. The results demonstrated that ONFH developed in four beagles at 8 weeks and in six beagles at 12 weeks, whereas no ONFH was detected in the CON group. No abnormalities were detected by MRI and DTI, and no mortality occurred. In beagles with ONFH in the LM group, the ADC values were 4.7±0.2×10-4 and 4.8±0.3×10-4 mm2/sec at 8 and 12 weeks, respectively, which were significantly increased compared with the CON group (2.5±0.3×10-4 and 2.4±0.3×10-4 mm2, respectively) and the LM group without ONFH (2.6±0.4×10-4 and 2.4±0.3×10-4 mm2, respectively) (P<0.05). The results of the present study indicated that intramuscular injection of LPS and MPS may lead to early-stage ONFH in beagles. As such, the detection of locally elevated ADC values in the femoral head may aid in the early diagnosis of ONFH.
Collapse
Affiliation(s)
- Hongwei Min
- Department of Rehabilitation, Capital Medical University, Beijing 100068, P.R. China; Department of Orthopedics and Rehabilitation, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing 100068, P.R. China
| | - Feng Xu
- Department of Rehabilitation, Capital Medical University, Beijing 100068, P.R. China; Department of Orthopedics and Rehabilitation, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing 100068, P.R. China
| | - Rui Gu
- Department of Rehabilitation, Capital Medical University, Beijing 100068, P.R. China; Department of Orthopedics and Rehabilitation, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing 100068, P.R. China
| | - Xinzuo Han
- Department of Rehabilitation, Capital Medical University, Beijing 100068, P.R. China; Department of Orthopedics and Rehabilitation, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing 100068, P.R. China
| | - Anqing Wang
- Department of Rehabilitation, Capital Medical University, Beijing 100068, P.R. China; Department of Orthopedics and Rehabilitation, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing 100068, P.R. China
| | - Kemin Liu
- Department of Rehabilitation, Capital Medical University, Beijing 100068, P.R. China; Department of Orthopedics and Rehabilitation, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing 100068, P.R. China
| |
Collapse
|
20
|
Lin N, Xiong LL, Zhang RP, Zheng H, Wang L, Qian ZY, Zhang P, Chen ZW, Gao FB, Wang TH. Injection of Aβ1-40 into hippocampus induced cognitive lesion associated with neuronal apoptosis and multiple gene expressions in the tree shrew. Apoptosis 2016; 21:621-40. [DOI: 10.1007/s10495-016-1227-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Ou Y, Gollub RL, Retzepi K, Reynolds N, Pienaar R, Pieper S, Murphy SN, Grant PE, Zöllei L. Brain extraction in pediatric ADC maps, toward characterizing neuro-development in multi-platform and multi-institution clinical images. Neuroimage 2015; 122:246-61. [PMID: 26260429 PMCID: PMC4966541 DOI: 10.1016/j.neuroimage.2015.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 07/29/2015] [Accepted: 08/03/2015] [Indexed: 01/18/2023] Open
Abstract
Apparent Diffusion Coefficient (ADC) maps can be used to characterize myelination and to detect abnormalities in the developing brain. However, given the normal variation in regional ADC with myelination, detection of abnormalities is difficult when based on visual assessment. Quantitative and automated analysis of pediatric ADC maps is thus desired but requires accurate brain extraction as the first step. Currently, most existing brain extraction methods are optimized for structural T1-weighted MR images of fully myelinated brains. Due to differences in age and image contrast, these approaches do not translate well to pediatric ADC maps. To address this problem, we present a multi-atlas brain extraction framework that has 1) specificity: designed and optimized specifically for pediatric ADC maps; 2) generality: applicable to multi-platform and multi-institution data, and to subjects at various neuro-developmental stages across the first 6 years of life; 3) accuracy: highly accurate compared to expert annotations; and 4) consistency: consistently accurate regardless of sources of data and ages of subjects. We show how we achieve these goals, via optimizing major components in a multi-atlas brain extraction framework, and via developing and evaluating new criteria for its atlas ranking component. Moreover, we demonstrate that these goals can be achieved with a fixed set of atlases and a fixed set of parameters, which opens doors for our optimized framework to be used in large-scale and multi-institution neuro-developmental and clinical studies. In a pilot study, we use this framework in a dataset containing scanner-generated ADC maps from 308 pediatric patients collected during the course of routine clinical care. Our framework leads to successful quantifications of the changes in whole-brain volumes and mean ADC values across the first 6 years of life.
Collapse
Affiliation(s)
- Yangming Ou
- Psychiatric Neuroimaging, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 120 2nd Ave, Charlestown, MA 02129, USA; Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129, USA.
| | - Randy L Gollub
- Psychiatric Neuroimaging, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 120 2nd Ave, Charlestown, MA 02129, USA; Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129, USA
| | - Kallirroi Retzepi
- Psychiatric Neuroimaging, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 120 2nd Ave, Charlestown, MA 02129, USA; Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129, USA
| | - Nathaniel Reynolds
- Psychiatric Neuroimaging, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 120 2nd Ave, Charlestown, MA 02129, USA; Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129, USA
| | - Rudolph Pienaar
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Children's Hospital Boston, Harvard Medical School, 1 Autumn St, Boston, MA 02115, USA
| | - Steve Pieper
- Isomics, Inc., 55 Kirkland St, Cambridge, MA 02138, USA
| | - Shawn N Murphy
- Research Computing, Partners HealthCare, 1 Constitution Center, Charlestown, MA 02129, USA; Laboratory of Computer Science, Massachusetts General Hospital, Harvard Medical School, 50 Staniford St, Boston, MA 02114, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Children's Hospital Boston, Harvard Medical School, 1 Autumn St, Boston, MA 02115, USA
| | - Lilla Zöllei
- Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129, USA
| |
Collapse
|
22
|
Oikawa T, Tatewaki Y, Murata T, Kato Y, Mugikura S, Takase K, Takahashi S. Utility of diffusion tensor imaging parameters for diagnosis of hemimegalencephaly. Neuroradiol J 2015; 28:628-33. [PMID: 26481187 DOI: 10.1177/1971400915609334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Hemimegalencephaly is a rare hamartomatous entity characterised by enlargement of all or part of the cerebral hemisphere ipsilaterally with cortical dysgenesis, large lateral ventricle and white matter hypertrophy with or without advanced myelination. Although conventional magnetic resonance imaging (MRI) is useful for detecting these diagnostic features, hemimegalencephaly is not always easily distinguished from other entities, especially when hemimegalencephaly shows blurring between the grey and white matter. Diffusion tensor imaging (DTI) is a functional MRI technique commonly used to assess the integrity of white matter. The usefulness of DTI in assessing hemimegalencephaly has not been fully elucidated. In this study, we clarified the characteristics of hemimegalencephaly with regard to DTI and its parameters including fractional anisotropy and apparent diffusion coefficient. METHODS Three patients with hemimegalencephaly underwent MRI including DTI. We first visually compared fractional anisotropy mapping and conventional MRI. Next, we quantitatively measured the fractional anisotropy and apparent diffusion coefficient values in the subcortical white matter of the hemisphere with hemimegalencephaly and corresponding normal-appearing contralateral regions and analysed the values using the Mann-Whitney U test. RESULTS On fractional anisotropy mapping, we could clearly distinguish the junction of grey and white matter and observed thicker white matter in the hemisphere with hemimegalencephaly, which was unclear on conventional MRI. The white matter in the hemisphere with hemimegalencephaly showed significantly higher fractional anisotropy (P<0.0001) and lower apparent diffusion coefficient (P=0.0022) values than the normal contralateral side. CONCLUSION DTI parameters showed salient hemimegalencephaly features and could be useful in its assessment.
Collapse
Affiliation(s)
- Tomomi Oikawa
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Japan
| | - Yasuko Tatewaki
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Japan
| | - Takaki Murata
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Japan
| | - Yumiko Kato
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Japan
| | - Shunji Mugikura
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Japan
| | - Kei Takase
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Japan
| | - Shoki Takahashi
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Japan
| |
Collapse
|
23
|
Morita T, Morimoto M, Yamada K, Hasegawa T, Morioka S, Kidowaki S, Moroto M, Yamashita S, Maeda H, Chiyonobu T, Tokuda S, Hosoi H. Low-grade intraventricular hemorrhage disrupts cerebellar white matter in preterm infants: evidence from diffusion tensor imaging. Neuroradiology 2015; 57:507-14. [PMID: 25596864 DOI: 10.1007/s00234-015-1487-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 01/05/2015] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Recent diffusion tensor imaging (DTI) studies have demonstrated that leakage of hemosiderin into cerebrospinal fluid (CSF), which is caused by high-grade intraventricular hemorrhage (IVH), can affect cerebellar development in preterm born infants. However, a direct effect of low-grade IVH on cerebellar development is unknown. Thus, we evaluated the cerebellar and cerebral white matter (WM) of preterm infants with low-grade IVH. METHODS Using DTI tractography performed at term-equivalent age, we analyzed 42 infants who were born less than 30 weeks gestational age (GA) at birth (22 with low-grade IVH, 20 without). These infants were divided into two birth groups depending on GA, and we then compared the presence and absence of IVH which was diagnosed by cerebral ultrasound (CUS) within 10 days after birth or conventional magnetic resonance imaging (MRI) at term-equivalent age in each group. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) at the superior cerebellar peduncle (SCP), middle cerebellar peduncle (MCP), motor tract, and sensory tract were measured. RESULTS In the SCP, preterm born infants with IVH had lower FA values compared with infants without IVH. In particular, younger preterm birth with IVH had lower FA values in the SCP and motor tract and higher ADC values in the MCP. CONCLUSION Low-grade IVH impaired cerebellar and cerebral WM, especially in the SCP. Moreover, younger preterm infants exhibited greater disruptions to cerebellar WM and the motor tract than infants of older preterm birth.
Collapse
Affiliation(s)
- Takashi Morita
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kim J, Choi IY, Dong Y, Wang WT, Brooks WM, Weiner CP, Lee P. Chronic fetal hypoxia affects axonal maturation in guinea pigs during development: A longitudinal diffusion tensor imaging and T2 mapping study. J Magn Reson Imaging 2014; 42:658-65. [PMID: 25504885 DOI: 10.1002/jmri.24825] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To investigate the impact of chronic hypoxia on neonatal brains, and follow developmental alterations and adaptations noninvasively in a guinea pig model. Chronic hypoxemia is the prime cause of fetal brain injury and long-term sequelae such as neurodevelopmental compromise, seizures, and cerebral palsy. MATERIALS AND METHODS Thirty guinea pigs underwent either normoxic and hypoxemic conditions during the critical stage of brain development (0.7 gestation) and studied prenatally (n = 16) or perinatally (n = 14). Fourteen newborns (7 hypoxia and 7 normoxia group) were scanned longitudinally to characterize physiological and morphological alterations, and axonal myelination and injury using in vivo diffusion tensor imaging (DTI), T2 mapping, and T2 -weighted magnetic resonance imaging (MRI). Sixteen fetuses (8 hypoxia and 8 normoxia) were studied ex vivo to assess hypoxia-induced neuronal injury/loss using Nissl staining and quantitative reverse transcriptase polymerase chain reaction methods. RESULTS Developmental brains in the hypoxia group showed lower fractional anisotropy in the corpus callosum (-12%, P = 0.02) and lower T2 values in the hippocampus (-16%, P = 0.003) compared with the normoxia group with no differences in the cortex (P > 0.07), indicating vulnerability of the hippocampus and cerebral white matter during early development. Fetal guinea pig brains with chronic hypoxia demonstrated an over 10-fold increase in expression levels of hypoxia index genes such as erythropoietin and HIF-1α, and an over 40% reduction in neuronal density, confirming prenatal brain damage. CONCLUSION In vivo MRI measurement, such as DTI and T2 mapping, provides quantitative parameters to characterize neurodevelopmental abnormalities and to monitor the impact of prenatal insult on the postnatal brain maturation of guinea pigs.
Collapse
Affiliation(s)
- Jieun Kim
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - In-Young Choi
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA.,The Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yafeng Dong
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, Kansas, USA.,Center for the Developmental Origins of Adult Health and Disease, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wen-Tung Wang
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - William M Brooks
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Carl P Weiner
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, Kansas, USA.,Center for the Developmental Origins of Adult Health and Disease, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Phil Lee
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
25
|
Kilicarslan R, Ilhan MM, Alkan A, Aralasmak A, Akkoyunlu ME, Kart L, Tasan E. Microstructural brain changes in acromegaly: quantitative analysis by diffusion tensor imaging. BJR Case Rep 2014. [DOI: 10.1259/bjrcr.20130801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
26
|
Cauley KA, Filippi CG. Apparent diffusion coefficient histogram analysis of neonatal hypoxic-ischemic encephalopathy. Pediatr Radiol 2014; 44:738-46. [PMID: 24652007 DOI: 10.1007/s00247-013-2864-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/06/2013] [Accepted: 12/15/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Diffusion-weighted imaging is a valuable tool in the assessment of the neonatal brain, and changes in diffusion are seen in normal development as well as in pathological states such as hypoxic-ischemic encephalopathy (HIE). Various methods of quantitative assessment of diffusion values have been reported. Global ischemic injury occurring during the time of rapid developmental changes in brain myelination can complicate the imaging diagnosis of neonatal HIE. OBJECTIVE To compare a quantitative method of histographic analysis of brain apparent coefficient (ADC) maps to the qualitative interpretation of routine brain MR imaging studies. We correlate changes in diffusion values with gestational age in radiographically normal neonates, and we investigate the sensitivity of the method as a quantitative measure of hypoxic-ischemic encephalopathy. MATERIALS AND METHODS We reviewed all brain MRI studies from the neonatal intensive care unit (NICU) at our university medical center over a 4-year period to identify cases that were radiographically normal (23 cases) and those with diffuse, global hypoxic-ischemic encephalopathy (12 cases). We histographically displayed ADC values of a single brain slice at the level of the basal ganglia and correlated peak (s-sDav) and lowest histogram values (s-sDlowest) with gestational age. RESULTS Normative s-sDav values correlated significantly with gestational age and declined linearly through the neonatal period (r (2) = 0.477, P < 0.01). Six of 12 cases of known HIE demonstrated significantly lower s-sDav and s-sDlowest ADC values than were reflected in the normative distribution; several cases of HIE fell within a 95% confidence interval for normative studies, and one case demonstrated higher-than-normal s-sDav. CONCLUSION Single-slice histographic display of ADC values is a rapid and clinically feasible method of quantitative analysis of diffusion. In this study normative values derived from consecutive neonates without radiographic evidence of ischemic injury are correlated with gestational age, declining linearly throughout the perinatal period. This method does identify cases of HIE, though the overall sensitivity of the method is low.
Collapse
Affiliation(s)
- Keith A Cauley
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA,
| | | |
Collapse
|
27
|
Choudhri AF, Chin EM, Blitz AM, Gandhi D. Diffusion tensor imaging of cerebral white matter: technique, anatomy, and pathologic patterns. Radiol Clin North Am 2014; 52:413-25. [PMID: 24582347 DOI: 10.1016/j.rcl.2013.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diffusion tensor imaging is a magnetic resonance imaging technique that provides insight into the anatomy and integrity of white matter pathways in the brain. Further processing of these data can help map individual tracts, which can aid in surgical planning. Understanding the basics of this technique can improve characterization of white matter development and disorders.
Collapse
Affiliation(s)
- Asim F Choudhri
- Department of Radiology, University of Tennessee Health Science Center, 848 Adams Avenue, G216, Memphis, TN 38103, USA; Department of Neurosurgery, University of Tennessee Health Science Center, 848 Adams Avenue, G216, Memphis, TN 38103, USA; Department of Ophthalmology, University of Tennessee Health Science Center, 848 Adams Avenue, G216, Memphis, TN 38103, USA; Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, 848 Adams Avenue, G216, Memphis, TN 38103, USA.
| | - Eric M Chin
- Department of Radiology, University of Tennessee Health Science Center, 848 Adams Avenue, G216, Memphis, TN 38103, USA
| | - Ari M Blitz
- Division of Neuroradiology, Department of Radiology and Radiological Science, Johns Hopkins University, 600 N Wolfe Street, B100, Baltimore, MD 21287, USA
| | - Dheeraj Gandhi
- Division of Neuroradiology, Department of Radiology, University of Maryland, 22 S Greene Street, Baltimore, MD 21201, USA; Department of Neurology, University of Maryland, 22 S Greene Street, Baltimore, MD 21201, USA; Department of Neurosurgery, University of Maryland, 22 S Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
28
|
Kilicarslan R, Ilhan MM, Alkan A, Aralasmak A, Akkoyunlu ME, Kart L, Tasan E. Microstructural brain changes in acromegaly: quantitative analysis by diffusion tensor imaging. Br J Radiol 2014; 87:20130801. [PMID: 24734977 DOI: 10.1259/bjr.20130801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE We examined brain diffusion changes of patients with acromegaly. We searched whether there are differences in apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values between remission and non-remission patients with acromegaly and investigated any effect of time of hormone exposure on diffusion metrics. METHODS The values of FA and ADC were calculated in a total of 35 patients with acromegaly and 28 control subjects. Patients were subdivided into remission and non-remission groups. We looked at brain FA and ADC differences among the groups and looked for any relation between the diffusion changes and time of hormone exposure among the patients with acromegaly. RESULTS We found decreased FA and increased ADC values in some of the growth hormone responsive areas. There were no significant brain diffusion changes between remission and non-remission groups. The most affected areas were the hypothalamus, parietal white matter and pre-motor cortex in patients with acromegaly. In terms of hormone exposure time among the patients with acromegaly, there was no effect of disease duration on brain microstructural changes. CONCLUSION All patients with acromegaly showed increased brain diffusion with no relation to disease duration and treatment status. We suggested that in patients with acromegaly, brain damage had already occurred in the subclinical period before symptom onset. ADVANCES IN KNOWLEDGE This study contributes to the understanding of the mechanisms in acromegaly.
Collapse
Affiliation(s)
- R Kilicarslan
- 1 Department of Radiology, Bezmialem Vakif University School of Medicine, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
29
|
Assessing white matter microstructure of the newborn with multi-shell diffusion MRI and biophysical compartment models. Neuroimage 2014; 96:288-99. [PMID: 24680870 DOI: 10.1016/j.neuroimage.2014.03.057] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/19/2014] [Accepted: 03/21/2014] [Indexed: 01/28/2023] Open
Abstract
Brain white matter connections have become a focus of major interest with important maturational processes occurring in newborns. To study the complex microstructural developmental changes in-vivo, it is imperative that non-invasive neuroimaging approaches are developed for this age-group. Multi-b-value diffusion weighted imaging data were acquired in 13 newborns, and the biophysical compartment diffusion models CHARMED-light and NODDI, providing new microstructural parameters such as intra-neurite volume fraction (νin) and neurite orientation dispersion index (ODI), were developed for newborn data. Comparative analysis was performed and twenty ROIs in the white matter were investigated. Diffusion tensor imaging and both biophysical compartment models highlighted the compact and oriented structure of the corpus-callosum with the highest FA and νin values and the smallest ODI values. We could clearly differentiate, using the FA, νin and ODI, the posterior and anterior internal capsule representing similar cellular structure but with different maturation (i.e. partially myelinated and absence of myelin, respectively). Late maturing regions (external capsule and periventricular crossroads of pathways) had lower νin values, but displayed significant differences in ODI. The compartmented models CHARMED-light and NODDI bring new indices corroborating the cellular architectures, with the lowest νin, reflecting the late maturation of areas with thin non-myelinated fibers, and with highest ODI indicating the presence of fiber crossings and fanning. The application of biophysical compartment diffusion models adds new insights to the brain white matter development in vivo.
Collapse
|
30
|
Wintermark M, Huss DS, Shah BB, Tustison N, Druzgal TJ, Kassell N, Elias WJ. Thalamic connectivity in patients with essential tremor treated with MR imaging-guided focused ultrasound: in vivo fiber tracking by using diffusion-tensor MR imaging. Radiology 2014; 272:202-9. [PMID: 24620914 DOI: 10.1148/radiol.14132112] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To use diffusion-tensor (DT) magnetic resonance (MR) imaging in patients with essential tremor who were treated with transcranial MR imaging-guided focused ultrasound lesion inducement to identify the structural connectivity of the ventralis intermedius nucleus of the thalamus and determine how DT imaging changes correlated with tremor changes after lesion inducement. MATERIALS AND METHODS With institutional review board approval, and with prospective informed consent, 15 patients with medication-refractory essential tremor were enrolled in a HIPAA-compliant pilot study and were treated with transcranial MR imaging-guided focused ultrasound surgery targeting the ventralis intermedius nucleus of the thalamus contralateral to their dominant hand. Fourteen patients were ultimately included. DT MR imaging studies at 3.0 T were performed preoperatively and 24 hours, 1 week, 1 month, and 3 months after the procedure. Fractional anisotropy (FA) maps were calculated from the DT imaging data sets for all time points in all patients. Voxels where FA consistently decreased over time were identified, and FA change in these voxels was correlated with clinical changes in tremor over the same period by using Pearson correlation. RESULTS Ipsilateral brain structures that showed prespecified negative correlation values of FA over time of -0.5 or less included the pre- and postcentral subcortical white matter in the hand knob area; the region of the corticospinal tract in the centrum semiovale, in the posterior limb of the internal capsule, and in the cerebral peduncle; the thalamus; the region of the red nucleus; the location of the central tegmental tract; and the region of the inferior olive. The contralateral middle cerebellar peduncle and bilateral portions of the superior vermis also showed persistent decrease in FA over time. There was strong correlation between decrease in FA and clinical improvement in hand tremor 3 months after lesion inducement (P < .001). CONCLUSION DT MR imaging after MR imaging-guided focused ultrasound thalamotomy depicts changes in specific brain structures. The magnitude of the DT imaging changes after thalamic lesion inducement correlates with the degree of clinical improvement in essential tremor.
Collapse
Affiliation(s)
- Max Wintermark
- From the Department of Radiology, Neuroradiology Division (M.W., N.T., T.J.D.), Department of Neurosurgery (D.S.H., N.K., W.J.E.), and Department of Neurology (B.B.S.), University of Virginia, 1215 Lee St, New Hospital, 1st Floor, Room 1011, Charlottesville, VA 22908-0170; and Department of Radiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (M.W.)
| | | | | | | | | | | | | |
Collapse
|
31
|
Yoong M, Seunarine K, Martinos M, Chin RF, Clark CA, Scott RC. Prolonged febrile seizures cause reversible reductions in white matter integrity. NEUROIMAGE-CLINICAL 2013; 3:515-21. [PMID: 24273734 PMCID: PMC3830064 DOI: 10.1016/j.nicl.2013.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/03/2013] [Accepted: 10/17/2013] [Indexed: 11/24/2022]
Abstract
Prolonged febrile seizures (PFS) are the commonest cause of childhood status epilepticus and are believed to carry a risk of neuronal damage, in particular to the mesial temporal lobe. This study was designed to determine: i) the effect of prolonged febrile seizures on white matter and ii) the temporal evolution of any changes seen. 33 children were recruited 1 month following PFS and underwent diffusion tensor imaging (DTI) with repeat imaging at 6 and 12 months after the original episode of PFS. 18 age-matched healthy control subjects underwent similar investigations at a single time point. Tract-based spatial statistics (TBSS) was used to compare fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) between patients and controls on a voxel-wise basis within the white matter skeleton. Widespread reductions in FA along multiple white matter tracts were found at 1 and 6 months post-PFS, but these had resolved at 12 months. At one month post-PFS the main changes seen were reductions in AD but at 6 months these had predominantly changed to increases in RD. These widespread white matter changes have not previously been noted following PFS. There are many possible explanations, but one plausible hypothesis is that this represents a temporary halting of normal white matter development caused by the seizure, that then resumes and normalises in the majority of children. Widespread reductions in FA occur in children after prolonged febrile seizures. These reductions persist up to 6 months post-PFS but resolve by 1 year. This may represent a seizure-related disruption of white matter development.
Collapse
Affiliation(s)
- M Yoong
- Neurosciences Unit, UCL Institute of Child Health, 4/5 Long Yard, London WC1N 3LU, UK ; Imaging and Biophysics Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 2AP, UK ; Young Epilepsy, Lingfield, Surrey, UK ; Edinburgh Neurosciences, The University of Edinburgh, Muir Maxwell Epilepsy Centre, Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
32
|
Diffusion tensor imaging patterns differ in bulbar and limb onset amyotrophic lateral sclerosis. Clin Neurol Neurosurg 2013; 115:1281-7. [DOI: 10.1016/j.clineuro.2012.11.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 11/27/2012] [Accepted: 11/29/2012] [Indexed: 12/11/2022]
|
33
|
Abstract
Diffusion tensor imaging (DTI) is an MRI technique that can measure the macroscopic structural organization in brain tissues. DTI has been shown to provide information complementary to relaxation-based MRI about the changes in the brain's microstructure. In the pediatric population, DTI enables quantitative observation of the maturation process of white matter structures. Its ability to delineate various brain structures during developmental stages makes it an effective tool with which to characterize both the normal and abnormal anatomy of the developing brain. This review will highlight the advantages, as well as the common technical pitfalls of pediatric DTI. In addition, image quantification strategies for various DTI-derived parameters and the normal brain developmental changes associated with these parameters are discussed.
Collapse
|
34
|
Watanabe M, Sakai O, Ozonoff A, Kussman S, Jara H. Age-related apparent diffusion coefficient changes in the normal brain. Radiology 2012; 266:575-82. [PMID: 23143020 DOI: 10.1148/radiol.12112420] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To measure the mean diffusional age-related changes of the brain over the full human life span by using diffusion-weighted spin-echo single-shot echo-planar magnetic resonance (MR) imaging and sequential whole-brain apparent diffusion coefficient (ADC) histogram analysis and, secondarily, to build mathematical models of these normal age-related changes throughout human life. MATERIALS AND METHODS After obtaining institutional review board approval, a HIPAA-compliant retrospective search was conducted for brain MR imaging studies performed in 2007 for various clinical indications. Informed consent was waived. The brain data of 414 healthy subjects (189 males and 225 females; mean age, 33.7 years; age range, 2 days to 89.3 years) were obtained with diffusion-weighted spin-echo single-shot echo-planar MR imaging. ADC histograms of the whole brain were generated. ADC peak values, histogram widths, and intracranial volumes were plotted against age, and model parameters were estimated by using nonlinear regression. RESULTS Four different stages were identified for aging changes in ADC peak values, as characterized by specific mathematical terms: There were age-associated exponential decays for the maturation period and the development period, a constant term for adulthood, and a linear increase for the senescence period. The age dependency of ADC peak value was simulated by using four-term six-coefficient function, including biexponential and linear terms. This model fit the data very closely (R(2) = 0.91). CONCLUSION Brain diffusivity as a whole demonstrated age-related changes through four distinct periods of life. These results could contribute to establishing an ADC baseline of the normal brain, covering the full human life span.
Collapse
Affiliation(s)
- Memi Watanabe
- Department of Radiology, Boston Medical Center, Boston University School of Medicine, 820 Harrison Ave, FGH Bldg, 3rd Floor, Boston, MA 02118, USA.
| | | | | | | | | |
Collapse
|
35
|
Provenzale JM, Isaacson J, Stinnett S, Chen S. Analysis of corpus callosum diffusion tensor imaging parameters in infants. Neuroradiol J 2012; 25:342-50. [PMID: 24028988 DOI: 10.1177/197140091202500310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/31/2012] [Indexed: 11/15/2022] Open
Abstract
Radial diffusivity is a diffusion tensor imaging (DTI) metric that has received increased attention in recent studies as a parameter that may better reflect myelination than the more commonly-used fractional anisotropy (FA). This study compared rates of radial diffusivity decrease against FA increase and axial diffusivity decrease on DTI maps in the corpus callosum of normal infants during the first postnatal year. Fifty-three normal infants (range: 0-52 weeks adjusted for gestational age) underwent six-direction DTI on a 1.5 Tesla scanner (b= 1,000 s/mm(2), one excitation). A single individual placed regions of interest on FA maps in the genu 1) and radial diffusivity (i.e., λ and splenium to obtain axial (i.e., 3)/2]), FA and ADC. We calculated mean and median values for FA, λ 2+λ[ ADC, radial diffusivity and axial diffusivity in each of four 13-week epochs and measured the percent change over the first year of life. Within the genu, radial diffusivity decreased 36%, FA increased 25%, ADC decreased 22% and axial diffusivity decreased 10%. Within the splenium, radial diffusivity decreased 53%, FA increased 43%, ADC decreased 38%, and axial diffusivity decreased 23%. For both genu and splenium, the greatest difference was seen in radial diffusivity values, followed in order by FA, ADC and axial diffusivity. Furthermore, decreases in radial diffusivity were on the order of two to threefold greater than those in axial diffusivity. The high rate of radial diffusivity decrease compared to axial diffusivity decrease is consistent with myelination. Decreases in radial diffusivity were greater than increases in FA values. This finding is further support of the concept that radial diffusivity and FA values represent two different types of microstructural change during development of white matter.
Collapse
Affiliation(s)
- J M Provenzale
- Department of Radiology, Duke University and Emory University; Durham, NC, USA -
| | | | | | | |
Collapse
|
36
|
Darge K, Anupindi SA, Jaramillo D. MR imaging of the abdomen and pelvis in infants, children, and adolescents. Radiology 2011; 261:12-29. [PMID: 21931139 DOI: 10.1148/radiol.11101922] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent developments in magnetic resonance (MR) imaging have profoundly changed the investigation of abdominal and pelvic disease in pediatrics. Motion reduction techniques, such periodically rotated overlapping parallel lines with enhanced reconstruction, or PROPELLER, have resulted in reliable imaging with quiet breathing. Faster imaging sequences minimize artifact and allow for more efficient studies. Diffusion-weighted imaging has become increasingly important in the evaluation of neoplastic disease, depicting disease with increased cellularity and helping to differentiate benign from malignant masses. MR enterography helps visualize intra- and extraluminal bowel pathologic conditions. MR cholangiopancreatography can depict congenital and acquired causes of pancreatic and biliary abnormalities. MR urography is an effective technique for a one-stop-shop evaluation of structural urinary tract abnormality and renal function. Three-dimensional acquisitions allow volumetric display of structures from multiple angles. Specialized techniques allow quantification of iron and fat in the viscera in children with hemolytic anemia and obesity, respectively. This article covers current techniques and strategies to perform and optimize MR imaging of the abdomen and pelvis in infants, children, and adolescents and describes important practical applications.
Collapse
Affiliation(s)
- Kassa Darge
- Department of Radiology, The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|