1
|
Romero ÁB, Furtado FS, Sertic M, Goiffon RJ, Mahmood U, Catalano OA. Abdominal Positron Emission Tomography/Magnetic Resonance Imaging. Magn Reson Imaging Clin N Am 2023; 31:579-589. [PMID: 37741642 DOI: 10.1016/j.mric.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Hybrid positron emission tomography (PET)/magnetic resonance imaging (MRI) is highly suited for abdominal pathologies. A precise co-registration of anatomic and metabolic data is possible thanks to the simultaneous acquisition, leading to accurate imaging. The literature shows that PET/MRI is at least as good as PET/CT and even superior for some indications, such as primary hepatic tumors, distant metastasis evaluation, and inflammatory bowel disease. PET/MRI allows whole-body staging in a single session, improving health care efficiency and patient comfort.
Collapse
Affiliation(s)
- Álvaro Badenes Romero
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA; Department of Nuclear Medicine, Joan XXIII Hospital, Tarragona, Spain
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA
| | - Madaleine Sertic
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reece J Goiffon
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
2
|
Mainta IC, Sfakianaki I, Shiri I, Botsikas D, Garibotto V. The Clinical Added Value of Breast Cancer Imaging Using Hybrid PET/MR Imaging. Magn Reson Imaging Clin N Am 2023; 31:565-577. [PMID: 37741641 DOI: 10.1016/j.mric.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Dedicated MR imaging is highly performant for the evaluation of the primary lesion and should regularly be added to whole-body PET/MR imaging for the initial staging. PET/MR imaging is highly sensitive for the detection of nodal involvement and could be combined with the high specificity of axillary second look ultrasound for the confirmation of the N staging. For M staging, with the exception of lung lesions, PET/MR imaging is superior to PET/computed tomography, at half the radiation dose. The predictive value of multiparametric imaging with PET/MR imaging holds promise to improve through radiomics and artificial intelligence.
Collapse
Affiliation(s)
- Ismini C Mainta
- Department of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland.
| | - Ilektra Sfakianaki
- Department of Radiology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland
| | - Isaac Shiri
- Department of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland
| | - Diomidis Botsikas
- Department of Radiology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland
| | - Valentina Garibotto
- Department of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland; Faculty of Medicine, University of Geneva, Rue Michel Servet 1, Geneva 1211, Switzerland
| |
Collapse
|
3
|
Ruan D, Sun L. Diagnostic Performance of PET/MRI in Breast Cancer: A Systematic Review and Bayesian Bivariate Meta-analysis. Clin Breast Cancer 2023; 23:108-124. [PMID: 36549970 DOI: 10.1016/j.clbc.2022.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/07/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022]
Abstract
INTRODUCTION By performing a systematic review and meta-analysis, the diagnostic value of 18F-FDG PET/MRI in breast lesions, lymph nodes, and distant metastases was assessed, and the merits and demerits of PET/MRI in the application of breast cancer were comprehensively reviewed. METHODS Breast cancer-related studies using 18F-FDG PET/MRI as a diagnostic tool published before September 12, 2022 were included. The pooled sensitivity, specificity, log diagnostic odds ratio (LDOR), and area under the curve (AUC) were calculated using Bayesian bivariate meta-analysis in a lesion-based and patient-based manner. RESULTS We ultimately included 24 studies (including 1723 patients). Whether on a lesion-based or patient-based analysis, PET/MRI showed superior overall pooled sensitivity (0.95 [95% CI: 0.92-0.98] & 0.93 [95% CI: 0.88-0.98]), specificity (0.94 [95% CI: 0.90-0.97] & 0.94 [95% CI: 0.92-0.97]), LDOR (5.79 [95% CI: 4.95-6.86] & 5.64 [95% CI: 4.58-7.03]) and AUC (0.98 [95% CI: 0.94-0.99] & 0.98[95% CI: 0.92-0.99]) for diagnostic applications in breast cancer. In the specific subgroup analysis, PET/MRI had high pooled sensitivity and specificity for the diagnosis of breast lesions and distant metastatic lesions and was especially excellent for bone lesions. PET/MRI performed poorly for diagnosing axillary lymph nodes but was better than for lymph nodes at other sites (pooled sensitivity, specificity, LDOR, AUC: 0.86 vs. 0.58, 0.90 vs. 0.82, 4.09 vs. 1.98, 0.89 vs. 0.84). CONCLUSION 18F-FDG PET/MRI performed excellently in diagnosing breast lesions and distant metastases. It can be applied to the initial diagnosis of suspicious breast lesions, accurate staging of breast cancer patients, and accurate restaging of patients with suspected recurrence.
Collapse
Affiliation(s)
- Dan Ruan
- Department of Nuclear Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Long Sun
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
4
|
A Simultaneous Multiparametric 18F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14163944. [PMID: 36010936 PMCID: PMC9406327 DOI: 10.3390/cancers14163944] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary In this study, we aimed to build a machine-learning predictive model for the identification of triple negative breast cancer, the most aggressive subtype, using quantitative parameters and radiomics features extracted from tumor lesions on hybrid PET/MRI. The good performance of the model supports the hypothesis that hybrid PET/MRI can provide quantitative data able to non-invasively detect tumor biological characteristics using artificial intelligence software and further encourages the conduction of additional studies for this purpose. Abstract Purpose: To investigate whether a machine learning (ML)-based radiomics model applied to 18F-FDG PET/MRI is effective in molecular subtyping of breast cancer (BC) and specifically in discriminating triple negative (TN) from other molecular subtypes of BC. Methods: Eighty-six patients with 98 BC lesions (Luminal A = 10, Luminal B = 51, HER2+ = 12, TN = 25) were included and underwent simultaneous 18F-FDG PET/MRI of the breast. A 3D segmentation of BC lesion was performed on T2w, DCE, DWI and PET images. Quantitative diffusion and metabolic parameters were calculated and radiomics features extracted. Data were selected using the LASSO regression and used by a fine gaussian support vector machine (SVM) classifier with a 5-fold cross validation for identification of TNBC lesions. Results: Eight radiomics models were built based on different combinations of quantitative parameters and/or radiomic features. The best performance (AUROC 0.887, accuracy 82.8%, sensitivity 79.7%, specificity 86%, PPV 85.3%, NPV 80.8%) was found for the model combining first order, neighborhood gray level dependence matrix and size zone matrix-based radiomics features extracted from ADC and PET images. Conclusion: A ML-based radiomics model applied to 18F-FDG PET/MRI is able to non-invasively discriminate TNBC lesions from other BC molecular subtypes with high accuracy. In a future perspective, a “virtual biopsy” might be performed with radiomics signatures.
Collapse
|
5
|
The Use of 18F-FET-PET-MRI in Neuro-Oncology: The Best of Both Worlds—A Narrative Review. Diagnostics (Basel) 2022; 12:diagnostics12051202. [PMID: 35626357 PMCID: PMC9140561 DOI: 10.3390/diagnostics12051202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Gliomas are the most frequent primary tumors of the brain. They can be divided into grade II-IV astrocytomas and grade II-III oligodendrogliomas, based on their histomolecular profile. The prognosis and treatment is highly dependent on grade and well-identified prognostic and/or predictive molecular markers. Multi-parametric MRI, including diffusion weighted imaging, perfusion, and MR spectroscopy, showed increasing value in the non-invasive characterization of specific molecular subsets of gliomas. Radiolabeled amino-acid analogues, such as 18F-FET, have also been proven valuable in glioma imaging. These tracers not only contribute in the diagnostic process by detecting areas of dedifferentiation in diffuse gliomas, but this technique is also valuable in the follow-up of gliomas, as it can differentiate pseudo-progression from real tumor progression. Since multi-parametric MRI and 18F-FET PET are complementary imaging techniques, there may be a synergistic role for PET-MRI imaging in the neuro-oncological imaging of primary brain tumors. This could be of value for both primary staging, as well as during treatment and follow-up.
Collapse
|
6
|
Bruckmann NM, Morawitz J, Fendler WP, Ruckhäberle E, Bittner AK, Giesel FL, Herrmann K, Antoch G, Umutlu L, Kirchner J. A Role of PET/MR in Breast Cancer? Semin Nucl Med 2022; 52:611-618. [DOI: 10.1053/j.semnuclmed.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 01/18/2023]
|
7
|
Bouron C, Mathie C, Seegers V, Morel O, Jézéquel P, Lasla H, Guillerminet C, Girault S, Lacombe M, Sher A, Lacoeuille F, Patsouris A, Testard A. Prognostic Value of Metabolic, Volumetric and Textural Parameters of Baseline [ 18F]FDG PET/CT in Early Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14030637. [PMID: 35158904 PMCID: PMC8833829 DOI: 10.3390/cancers14030637] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The aim of this study was to evaluate PET/CT parameters to determine different prognostic groups in TNBC, in order to select patients with a high risk of relapse, for whom therapeutic escalation can be considered. We have demonstrated that the MTV, TLG and entropy of the primary breast lesion could be of interest to predict the prognostic outcome of TNBC patients. Abstract (1) Background: triple-negative breast cancer (TNBC) remains a clinical and therapeutic challenge primarily affecting young women with poor prognosis. TNBC is currently treated as a single entity but presents a very diverse profile in terms of prognosis and response to treatment. Positron emission tomography/computed tomography (PET/CT) with 18F-fluorodeoxyglucose ([18F]FDG) is gaining importance for the staging of breast cancers. TNBCs often show high [18F]FDG uptake and some studies have suggested a prognostic value for metabolic and volumetric parameters, but no study to our knowledge has examined textural features in TNBC. The objective of this study was to evaluate the association between metabolic, volumetric and textural parameters measured at the initial [18F]FDG PET/CT and disease-free survival (DFS) and overall survival (OS) in patients with nonmetastatic TBNC. (2) Methods: all consecutive nonmetastatic TNBC patients who underwent a [18F]FDG PET/CT examination upon diagnosis between 2012 and 2018 were retrospectively included. The metabolic and volumetric parameters (SUVmax, SUVmean, SUVpeak, MTV, and TLG) and the textural features (entropy, homogeneity, SRE, LRE, LGZE, and HGZE) of the primary tumor were collected. (3) Results: 111 patients were enrolled (median follow-up: 53.6 months). In the univariate analysis, high TLG, MTV and entropy values of the primary tumor were associated with lower DFS (p = 0.008, p = 0.006 and p = 0.025, respectively) and lower OS (p = 0.002, p = 0.001 and p = 0.046, respectively). The discriminating thresholds for two-year DFS were calculated as 7.5 for MTV, 55.8 for TLG and 2.6 for entropy. The discriminating thresholds for two-year OS were calculated as 9.3 for MTV, 57.4 for TLG and 2.67 for entropy. In the multivariate analysis, lymph node involvement in PET/CT was associated with lower DFS (p = 0.036), and the high MTV of the primary tumor was correlated with lower OS (p = 0.014). (4) Conclusions: textural features associated with metabolic and volumetric parameters of baseline [18F]FDG PET/CT have a prognostic value for identifying high-relapse-risk groups in early TNBC patients.
Collapse
Affiliation(s)
- Clément Bouron
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
- Department of Nuclear Medicine, University Hospital of Angers, 4 rue Larrey, 49100 Angers, France;
- Correspondence:
| | - Clara Mathie
- Department of Medical Oncology, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (C.M.); (A.P.)
| | - Valérie Seegers
- Research and Statistics Department, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France;
| | - Olivier Morel
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
| | - Pascal Jézéquel
- Omics Data Science Unit, ICO Pays de la Loire, Bd Jacques Monod, CEDEX, 44805 Saint-Herblain, France; (P.J.); (H.L.)
- CRCINA, UMR 1232 INSERM, Université de Nantes, Université d’Angers, Institut de Recherche en Santé, 8 Quai Moncousu—BP 70721, CEDEX 1, 44007 Nantes, France
| | - Hamza Lasla
- Omics Data Science Unit, ICO Pays de la Loire, Bd Jacques Monod, CEDEX, 44805 Saint-Herblain, France; (P.J.); (H.L.)
| | - Camille Guillerminet
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
- Department of Medical Physics, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France
| | - Sylvie Girault
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
| | - Marie Lacombe
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
| | - Avigaelle Sher
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
| | - Franck Lacoeuille
- Department of Nuclear Medicine, University Hospital of Angers, 4 rue Larrey, 49100 Angers, France;
- CRCINA, University of Nantes and Angers, INSERM UMR1232 équipe 17, 49055 Angers, France
| | - Anne Patsouris
- Department of Medical Oncology, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (C.M.); (A.P.)
- INSERM UMR1232 équipe 12, 49055 Angers, France
| | - Aude Testard
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
| |
Collapse
|
8
|
Fowler AM, Strigel RM. Clinical advances in PET-MRI for breast cancer. Lancet Oncol 2022; 23:e32-e43. [PMID: 34973230 PMCID: PMC9673821 DOI: 10.1016/s1470-2045(21)00577-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 01/03/2023]
Abstract
Imaging is paramount for the early detection and clinical staging of breast cancer, as well as to inform management decisions and direct therapy. PET-MRI is a quantitative hybrid imaging technology that combines metabolic and functional PET data with anatomical detail and functional perfusion information from MRI. The clinical applicability of PET-MRI for breast cancer is an active area of research. In this Review, we discuss the rationale and summarise the clinical evidence for the use of PET-MRI in the diagnosis, staging, prognosis, tumour phenotyping, and assessment of treatment response in breast cancer. The continued development and approval of targeted radiopharmaceuticals, together with radiomics and automated analysis tools, will further expand the opportunity for PET-MRI to provide added value for breast cancer imaging and patient care.
Collapse
Affiliation(s)
- Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| | - Roberta M Strigel
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
9
|
PET/MRI for Staging the Axilla in Breast Cancer: Current Evidence and the Rationale for SNB vs. PET/MRI Trials. Cancers (Basel) 2021; 13:cancers13143571. [PMID: 34298781 PMCID: PMC8303241 DOI: 10.3390/cancers13143571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary PET/MRI is a relatively new, hybrid imaging tool that allows practitioners to obtain both a local and systemic staging in breast cancer patients in a single exam. To date, the available evidence is not sufficient to determine the role of PET/MRI in breast cancer management. The aims of this paper are to provide an overview of the current literature on PET/MRI in breast cancer, and to illustrate two ongoing trials aimed at defining the eventual role of PET/MRI in axillary staging in two different settings: patients with early breast cancer and patients with positive axillary nodes that are candidates for primary systemic therapy. In both cases, findings from PET/MRI will be compared with the final pathology and could be helpful to better tailor axillary surgery in the future. Abstract Axillary surgery in breast cancer (BC) is no longer a therapeutic procedure but has become a purely staging procedure. The progressive improvement in imaging techniques has paved the way to the hypothesis that prognostic information on nodal status deriving from surgery could be obtained with an accurate diagnostic exam. Positron emission tomography/magnetic resonance imaging (PET/MRI) is a relatively new imaging tool and its role in breast cancer patients is still under investigation. We reviewed the available literature on PET/MRI in BC patients. This overview showed that PET/MRI yields a high diagnostic performance for the primary tumor and distant lesions of liver, brain and bone. In particular, the results of PET/MRI in staging the axilla are promising. This provided the rationale for two prospective comparative trials between axillary surgery and PET/MRI that could lead to a further de-escalation of surgical treatment of BC. • SNB vs. PET/MRI 1 trial compares PET/MRI and axillary surgery in staging the axilla of BC patients undergoing primary systemic therapy (PST). • SNB vs. PET/MRI 2 trial compares PET/MRI and sentinel node biopsy (SNB) in staging the axilla of early BC patients who are candidates for upfront surgery. Finally, these ongoing studies will help clarify the role of PET/MRI in BC and establish whether it represents a useful diagnostic tool that could guide, or ideally replace, axillary surgery in the future.
Collapse
|
10
|
Molecular subtypes of invasive breast cancer: correlation between PET/computed tomography and MRI findings. Nucl Med Commun 2021; 41:810-816. [PMID: 32427700 DOI: 10.1097/mnm.0000000000001220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of the study was to investigate the diagnostic value of fluorodeoxyglucose-18 (FDG)-PET/computed tomography (CT) and MRI parameters in determining the molecular subtypes of invasive breast cancer. METHODS Data from 55 primary invasive breast cancer masses in 51 female patients who underwent pre-treatment PET/CT and MRI scans, and histopathological diagnosis at the authors' center were retrospectively reviewed. The relationship between FDG-PET/CT and MRI parameters, including maximum and mean standard uptake values (SUVmax and SUVmean, respectively), mean metabolic index (MImean) and metabolic tumor volume (MTV) values obtained from FDG-PET, and shape, margin, internal contrast-enhancement characteristics, kinetic curve types, functional tumor volume (FTV), apparent diffusion coefficient (ADC) values obtained from MRI was evaluated. Subsequently, differences among molecular subtypes (i.e. luminal A, luminal B, c-erbB-2 positive, and triple-negative) in terms of PET/CT and MRI parameters were evaluated. RESULTS The luminal B subtype of invasive breast cancer had higher SUVmax and SUVmean (P = 0.002 and P = 0.017, respectively) values than the luminal A subtype. In addition, the triple-negative subtype had a higher SUVmax (P = 0.028) than the luminal A subtype. There was a statistically significant positive correlation between pathological tumor volume (PTV) and SUVmean (P = 0.019, r = 0.720). SUVmax and ADC were negatively correlated (P = 0.001; r = -0.384). A very strong positive correlation was detected between MTV and FTV (P = 0.000; r = 0.857), and between MTV and PTV (P = 0.006, r = 0.796), and between FTV and PTV (P = 0.006, r = 0.921). CONCLUSION Results of the present study suggest that SUVmax was superior to MRI findings in predicting molecular subtypes and that MRI was superior to PET/CT in predicting PTV.
Collapse
|
11
|
Surov A, Meyer HJ, Wienke A. Associations Between PET Parameters and Expression of Ki-67 in Breast Cancer. Transl Oncol 2019; 12:375-380. [PMID: 30522044 PMCID: PMC6279710 DOI: 10.1016/j.tranon.2018.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Numerous studies investigated relationships between positron emission tomography and proliferation index Ki-67 in breast cancer (BC) with inconsistent results. The aim of the present analysis was to provide evident data about associations between standardized uptake value (SUV) and expression of Ki-67 in BC. METHODS MEDLINE library, SCOPUS and EMBASE data bases were screened for relationships between SUV and Ki-67 in BC up to April 2018. Overall, 32 studies with 1802 patients were identified. The following data were extracted from the literature: authors, year of publication, number of patients, and correlation coefficients. Associations between SUV and Ki-67 were analyzed by Spearman's correlation coefficient. RESULTS Associations between SUVmax derived from 18F-FDG PET and Ki-67 were reported in 25 studies (1624 patients). The pooled correlation coefficient was 0.40, (95% CI = [0.34; 0.46]). Furthermore, 7 studies analyzed associations between SUVmax derived from 18F-fluorthymidin (FLT) PET and Ki-67 (178 patients). The pooled correlation coefficient was 0.54, (95% CI = [0.37; 0.70]). CONCLUSION SUVmax correlated moderately with expression of Ki-67 and, therefore, cannot be used as a surrogate marker for tumor proliferation. Further studies are needed to evaluate associations between PET parameters and histopathological findings like hormone receptor status in breast cancer.
Collapse
Affiliation(s)
- Alexey Surov
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany.
| | - Hans Jonas Meyer
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany.
| | - Andreas Wienke
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Magdeburger Str., 06097 Halle, Germany.
| |
Collapse
|