1
|
Bhattacharya K, Rastogi S, Mahajan A. Post-treatment imaging of gliomas: challenging the existing dogmas. Clin Radiol 2024; 79:e376-e392. [PMID: 38123395 DOI: 10.1016/j.crad.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/23/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Gliomas are the commonest malignant central nervous system tumours in adults and imaging is the cornerstone of diagnosis, treatment, and post-treatment follow-up of these patients. With the ever-evolving treatment strategies post-treatment imaging and interpretation in glioma remains challenging, more so with the advent of anti-angiogenic drugs and immunotherapy, which can significantly alter the appearance in this setting, thus making interpretation of routine imaging findings such as contrast enhancement, oedema, and mass effect difficult to interpret. This review details the various methods of management of glioma including the upcoming novel therapies and their impact on imaging findings, with a comprehensive description of the imaging findings in conventional and advanced imaging techniques. A systematic appraisal for the existing and emerging techniques of imaging in these settings and their clinical application including various response assessment guidelines and artificial intelligence based response assessment will also be discussed.
Collapse
Affiliation(s)
- K Bhattacharya
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - S Rastogi
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - A Mahajan
- Department of imaging, The Clatterbridge Cancer Centre, NHS Foundation Trust, Pembroke Place, Liverpool L7 8YA, UK; University of Liverpool, Liverpool L69 3BX, UK.
| |
Collapse
|
2
|
Manzarbeitia-Arroba B, Hodolic M, Pichler R, Osipova O, Soriano-Castrejón ÁM, García-Vicente AM. 18F-Fluoroethyl-L Tyrosine Positron Emission Tomography Radiomics in the Differentiation of Treatment-Related Changes from Disease Progression in Patients with Glioblastoma. Cancers (Basel) 2023; 16:195. [PMID: 38201621 PMCID: PMC10778283 DOI: 10.3390/cancers16010195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/10/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
The follow-up of glioma patients after therapeutic intervention remains a challenging topic, as therapy-related changes can emulate true progression in contrast-enhanced magnetic resonance imaging. 18F-fluoroethyl-tyrosine (18F-FET) is a radiopharmaceutical that accumulates in glioma cells due to an increased expression of L-amino acid transporters and, contrary to gadolinium, does not depend on blood-brain barrier disruption to reach tumoral cells. It has demonstrated a high diagnostic value in the differentiation of tumoral viability and pseudoprogression or any other therapy-related changes, especially when combining traditional visual analysis with modern radiomics. In this review, we aim to cover the potential role of 18F-FET positron emission tomography in everyday clinical practice when applied to the follow-up of patients after the first therapeutical intervention, early response evaluation, and the differential diagnosis between therapy-related changes and progression.
Collapse
Affiliation(s)
| | - Marina Hodolic
- Nuclear Medicine Department, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic;
| | - Robert Pichler
- Institute of Nuclear Medicine Kepler University Hospital—Neuromed Campus, 4020 Linz, Austria; (R.P.); (O.O.)
| | - Olga Osipova
- Institute of Nuclear Medicine Kepler University Hospital—Neuromed Campus, 4020 Linz, Austria; (R.P.); (O.O.)
| | | | - Ana María García-Vicente
- Nuclear Medicine Department, University Hospital of Toledo, 45007 Toledo, Spain; (B.M.-A.); (Á.M.S.-C.)
| |
Collapse
|
3
|
Li AY, Iv M. Conventional and Advanced Imaging Techniques in Post-treatment Glioma Imaging. FRONTIERS IN RADIOLOGY 2022; 2:883293. [PMID: 37492665 PMCID: PMC10365131 DOI: 10.3389/fradi.2022.883293] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/06/2022] [Indexed: 07/27/2023]
Abstract
Despite decades of advancement in the diagnosis and therapy of gliomas, the most malignant primary brain tumors, the overall survival rate is still dismal, and their post-treatment imaging appearance remains very challenging to interpret. Since the limitations of conventional magnetic resonance imaging (MRI) in the distinction between recurrence and treatment effect have been recognized, a variety of advanced MR and functional imaging techniques including diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), perfusion-weighted imaging (PWI), MR spectroscopy (MRS), as well as a variety of radiotracers for single photon emission computed tomography (SPECT) and positron emission tomography (PET) have been investigated for this indication along with voxel-based and more quantitative analytical methods in recent years. Machine learning and radiomics approaches in recent years have shown promise in distinguishing between recurrence and treatment effect as well as improving prognostication in a malignancy with a very short life expectancy. This review provides a comprehensive overview of the conventional and advanced imaging techniques with the potential to differentiate recurrence from treatment effect and includes updates in the state-of-the-art in advanced imaging with a brief overview of emerging experimental techniques. A series of representative cases are provided to illustrate the synthesis of conventional and advanced imaging with the clinical context which informs the radiologic evaluation of gliomas in the post-treatment setting.
Collapse
Affiliation(s)
- Anna Y. Li
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael Iv
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
4
|
Johnson DR, Glenn CA, Javan R, Olson JJ. Congress of Neurological Surgeons systematic review and evidence-based guidelines update on the role of imaging in the management of progressive glioblastoma in adults. J Neurooncol 2022; 158:139-165. [PMID: 34694565 DOI: 10.1007/s11060-021-03853-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022]
Abstract
TARGET POPULATION These recommendations apply to adults with glioblastoma who have been previously treated with first-line radiation or chemoradiotherapy and who are suspected of experiencing tumor progression. QUESTION In patients with previously treated glioblastoma, is standard contrast-enhanced magnetic resonance imaging including diffusion weighted imaging useful for diagnosing tumor progression and differentiating progression from treatment-related changes? LEVEL II Magnetic resonance imaging with and without gadolinium enhancement including diffusion weighted imaging is recommended as the imaging surveillance method to detect the progression of previously diagnosed glioblastoma. QUESTION In patients with previously treated glioblastoma, does magnetic resonance spectroscopy add useful information for diagnosing tumor progression and differentiating progression from treatment-related changes beyond that derived from standard magnetic resonance imaging with and without gadolinium enhancement? LEVEL II Magnetic resonance spectroscopy is recommended as a diagnostic method to differentiate true tumor progression from treatment-related imaging changes or pseudo-progression in patients with suspected progressive glioblastoma. QUESTION In patients with previously treated glioblastoma, does magnetic resonance perfusion add useful information for diagnosing tumor progression and differentiating progression from treatment-related changes beyond that derived from standard magnetic resonance imaging with and without gadolinium enhancement? LEVEL III Magnetic resonance perfusion is suggested as a diagnostic method to differentiate true tumor progression from treatment-related imaging changes or pseudo-progression in patients with suspected progressive glioblastoma. QUESTION In patients with previously treated glioblastoma, does the addition of single-photon emission computed tomography (SPECT) provide additional useful information for diagnosing tumor progression and differentiating progression from treatment-related changes beyond that derived from standard magnetic resonance imaging with and without gadolinium enhancement? LEVEL III Single-photon emission computed tomography imaging is suggested as a diagnostic method to differentiate true tumor progression from treatment-related imaging changes or pseudo-progression in patients with suspected progressive glioblastoma. QUESTION In patients with previously treated glioblastoma, does 18F-fluorodeoxyglucose positron emission tomography add useful information for diagnosing tumor progression and differentiating progression from treatment-related changes beyond that derived from standard magnetic resonance imaging with and without gadolinium enhancement? LEVEL III The routine use of 18F-fluorodeoxyglucose positron emission tomography to identify progression of glioblastoma is not recommended. QUESTION In patients with previously treated glioblastoma, does positron emission tomography with amino acid agents add useful information for diagnosing tumor progression and differentiating progression from treatment-related changes beyond that derived from standard magnetic resonance imaging with and without gadolinium enhancement? LEVEL III It is suggested that amino acid positron emission tomography be considered to assist in the differentiation of progressive glioblastoma from treatment related changes.
Collapse
Affiliation(s)
- Derek Richard Johnson
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Chad Allan Glenn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ramin Javan
- Department of Neuroradiology, George Washington University Hospital, Washington, DC, USA
| | - Jeffrey James Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
5
|
Santo G, Laudicella R, Linguanti F, Nappi AG, Abenavoli E, Vergura V, Rubini G, Sciagrà R, Arnone G, Schillaci O, Minutoli F, Baldari S, Quartuccio N, Bisdas S. The Utility of Conventional Amino Acid PET Radiotracers in the Evaluation of Glioma Recurrence also in Comparison with MRI. Diagnostics (Basel) 2022; 12:diagnostics12040844. [PMID: 35453892 PMCID: PMC9027186 DOI: 10.3390/diagnostics12040844] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023] Open
Abstract
AIM In this comprehensive review we present an update on the most relevant studies evaluating the utility of amino acid PET radiotracers for the evaluation of glioma recurrence as compared to magnetic resonance imaging (MRI). METHODS A literature search extended until June 2020 on the PubMed/MEDLINE literature database was conducted using the terms "high-grade glioma", "glioblastoma", "brain tumors", "positron emission tomography", "PET", "amino acid PET", "[11C]methyl-l-methionine", "[18F]fluoroethyl-tyrosine", "[18F]fluoro-l-dihydroxy-phenylalanine", "MET", "FET", "DOPA", "magnetic resonance imaging", "MRI", "advanced MRI", "magnetic resonance spectroscopy", "perfusion-weighted imaging", "diffusion-weighted imaging", "MRS", "PWI", "DWI", "hybrid PET/MR", "glioma recurrence", "pseudoprogression", "PSP", "treatment-related change", and "radiation necrosis" alone and in combination. Only original articles edited in English and about humans with at least 10 patients were included. RESULTS Forty-four articles were finally selected. Conventional amino acid PET tracers were demonstrated to be reliable diagnostic techniques in differentiating tumor recurrence thanks to their high uptake from tumor tissue and low background in normal grey matter, giving additional and early information to standard modalities. Among them, MET-PET seems to present the highest diagnostic value but its use is limited to on-site cyclotron facilities. [18F]labelled amino acids, such as FDOPA and FET, were developed to provide a more suitable PET tracer for routine clinical applications, and demonstrated similar diagnostic performance. When compared to the gold standard MRI, amino acid PET provides complementary and comparable information to standard modalities and seems to represent an essential tool in the differentiation between tumor recurrence and other entities such as pseudoprogression, radiation necrosis, and pseudoresponse. CONCLUSIONS Despite the introduction of new advanced imaging techniques, the diagnosis of glioma recurrence remains challenging. In this scenario, the growing knowledge about imaging techniques and analysis, such as the combined PET/MRI and the application of artificial intelligence (AI) and machine learning (ML), could represent promising tools to face this difficult and debated clinical issue.
Collapse
Affiliation(s)
- Giulia Santo
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.S.); (A.G.N.); (G.R.)
| | - Riccardo Laudicella
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (F.M.); (S.B.)
| | - Flavia Linguanti
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (F.L.); (E.A.); (V.V.); (R.S.)
| | - Anna Giulia Nappi
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.S.); (A.G.N.); (G.R.)
| | - Elisabetta Abenavoli
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (F.L.); (E.A.); (V.V.); (R.S.)
| | - Vittoria Vergura
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (F.L.); (E.A.); (V.V.); (R.S.)
| | - Giuseppe Rubini
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.S.); (A.G.N.); (G.R.)
| | - Roberto Sciagrà
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (F.L.); (E.A.); (V.V.); (R.S.)
| | - Gaspare Arnone
- Nuclear Medicine Unit, A.R.N.A.S. Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy; (G.A.); (N.Q.)
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy;
| | - Fabio Minutoli
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (F.M.); (S.B.)
| | - Sergio Baldari
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (F.M.); (S.B.)
| | - Natale Quartuccio
- Nuclear Medicine Unit, A.R.N.A.S. Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy; (G.A.); (N.Q.)
| | - Sotirios Bisdas
- Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London WC1N 3BG, UK
- Correspondence:
| |
Collapse
|
6
|
Chiaravalloti A, Cimini A, Ricci M, Quartuccio N, Arnone G, Filippi L, Calabria F, Leporace M, Bagnato A, Schillaci O. Positron emission tomography imaging in primary brain tumors. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
Bota DA, Mason W, Kesari S, Magge R, Winograd B, Elias I, Reich SD, Levin N, Trikha M, Desjardins A. Marizomib alone or in combination with bevacizumab in patients with recurrent glioblastoma: Phase I/II clinical trial data. Neurooncol Adv 2021; 3:vdab142. [PMID: 34729484 PMCID: PMC8557653 DOI: 10.1093/noajnl/vdab142] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background This phase I/II trial in patients with recurrent glioblastoma (GBM) evaluates the safety and preliminary efficacy of marizomib, an irreversible pan-proteasome inhibitor that crosses the blood–brain barrier. Methods Part A assessed the safety and efficacy of marizomib monotherapy. In Part B, escalating doses of marizomib (0.5–0.8 mg/m2) in combination with bevacizumab were evaluated. Part C explored intra-patient dose escalation of marizomib (0.8–1.0 mg/m2) for the combination. Results In Part A, 30 patients received marizomib monotherapy. The most common AEs were fatigue (66.7%), headache (46.7%), hallucination (43.3%), and insomnia (43.3%). One patient (3.3%) achieved a partial response. In Part B, the recommended phase II dose of marizomib was 0.8 mg/m2 when combined with bevacizumab 10 mg/kg. In Part C, dose escalation to 1.0 mg/m2 was not tolerated. Pooled analysis of 67 patients treated with marizomib ≤0.8 mg/m2 and bevacizumab showed a nonoverlapping safety profile consistent with the known safety profile of each agent: the most common grade ≥3 AEs were hypertension (16.4%), confusion (13.4%), headache (10.4%), and fatigue (10.4%). The overall response rate was 34.3%, including 2 patients with complete response. Six-month progression-free survival was 29.8%; median overall survival was 9.1 months. Conclusions The safety profile of marizomib as monotherapy and in combination with bevacizumab was consistent with previous observations that marizomib crosses the blood–brain barrier. Preliminary efficacy did not demonstrate a meaningful benefit of the addition of marizomib to bevacizumab for the treatment of recurrent GBM.
Collapse
Affiliation(s)
- Daniela A Bota
- Chao Family Comprehensive Cancer Center and Departments of Neurology and Neurological Surgery, University of California, Irvine, California, USA
| | - Warren Mason
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Santosh Kesari
- John Wayne Cancer Institute and Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, California, USA
| | - Rajiv Magge
- Weill Cornell Brain Tumor Center, New York, New York, USA
| | | | - Ileana Elias
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Steven D Reich
- Triphase Accelerator Corporation, San Diego, California, USA
| | - Nancy Levin
- Triphase Accelerator Corporation, San Diego, California, USA
| | - Mohit Trikha
- Triphase Accelerator Corporation, San Diego, California, USA
| | - Annick Desjardins
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
8
|
Hughes KL, O'Neal CM, Andrews BJ, Westrup AM, Battiste JD, Glenn CA. A systematic review of the utility of amino acid PET in assessing treatment response to bevacizumab in recurrent high-grade glioma. Neurooncol Adv 2021; 3:vdab003. [PMID: 34409294 PMCID: PMC8369430 DOI: 10.1093/noajnl/vdab003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background. Currently, bevacizumab (BEV), an antiangiogenic agent, is used as an adjunctive therapy to re-irradiation and surgery in patients with recurrent high-grade gliomas (rHGG). BEV has shown to decrease enhancement on MRI, but it is often unclear if these changes are due to tumor response to BEV or treatment-induced changes in the blood brain barrier. Preliminary studies show that amino acid PET can aid in distinguishing these changes on MRI. Methods. The authors performed a systematic review of PubMed and Embase through July 2020 with the search terms ‘bevacizumab’ or ‘Avastin’ and ‘recurrent glioma’ and ‘PET,’ yielding 38 papers, with 14 meeting inclusion criteria. Results. Thirteen out of fourteen studies included in this review used static PET and three studies used dynamic PET to evaluate the use of BEV in rHGG. Six studies used the amino acid tracer [18F]FET, four studies used [11C]MET, and four studies used [18F]FDOPA. Conclusion. [18F]FET, [11C]MET, and [18F]FDOPA PET in combination with MRI have shown promising results for improving accuracy in diagnosing tumor recurrence, detecting early treatment failure, and distinguishing between tumor progression and treatment-induced changes in patients with rHGG treated with BEV.
Collapse
Affiliation(s)
- Kendall L Hughes
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Christen M O'Neal
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bethany J Andrews
- Department of Neurosurgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alison M Westrup
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - James D Battiste
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Chad A Glenn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
9
|
Li G, Wu F, Zeng F, Zhai Y, Feng Y, Chang Y, Wang D, Jiang T, Zhang W. A novel DNA repair-related nomogram predicts survival in low-grade gliomas. CNS Neurosci Ther 2020; 27:186-195. [PMID: 33063446 PMCID: PMC7816205 DOI: 10.1111/cns.13464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 09/26/2020] [Indexed: 12/17/2022] Open
Abstract
Aims We aimed to create a tumor recurrent‐based prediction model to predict recurrence and survival in patients with low‐grade glioma. Methods This study enrolled 291 patients (188 in the training group and 103 in the validation group) with clinicopathological information and transcriptome sequencing data. LASSO‐COX algorithm was applied to shrink predictive factor size and build a predictive recurrent signature. GO, KEGG, and GSVA analyses were performed for function annotations of the recurrent signature. The calibration curves and C‐Index were assessed to evaluate the nomogram's performance. Results This study found that DNA repair functions of tumor cells were significantly enriched in recurrent low‐grade gliomas. A predictive recurrent signature, built by the LASSO‐COX algorithm, was significantly associated with overall survival and progression‐free survival in low‐grade gliomas. Moreover, function annotations analysis of the predictive recurrent signature exhibited that the signature was associated with DNA repair functions. The nomogram, combining the predictive recurrent signature and clinical prognostic predictors, showed powerful prognostic ability in the training and validation groups. Conclusion An individualized prediction model was created to predict 1‐, 2‐, 3‐, 5‐, and 10‐year survival and recurrent rate of patients with low‐grade glioma, which may serve as a potential tool to guide postoperative individualized care.
Collapse
Affiliation(s)
- Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fan Zeng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - You Zhai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yuemei Feng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yuanhao Chang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Di Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Asian Glioma Genome Atlas Network (AGGA)
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Asian Glioma Genome Atlas Network (AGGA)
| |
Collapse
|
10
|
Wirsching HG, Roelcke U, Weller J, Hundsberger T, Hottinger AF, von Moos R, Caparrotti F, Conen K, Remonda L, Roth P, Ochsenbein A, Tabatabai G, Weller M. MRI and 18FET-PET Predict Survival Benefit from Bevacizumab Plus Radiotherapy in Patients with Isocitrate Dehydrogenase Wild-type Glioblastoma: Results from the Randomized ARTE Trial. Clin Cancer Res 2020; 27:179-188. [PMID: 32967939 DOI: 10.1158/1078-0432.ccr-20-2096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/09/2020] [Accepted: 09/17/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE To explore a prognostic or predictive role of MRI and O-(2-18F-fluoroethyl)-L-tyrosine (18FET) PET parameters for outcome in the randomized multicenter trial ARTE that compared bevacizumab plus radiotherapy with radiotherpay alone in elderly patients with glioblastoma. PATIENTS AND METHODS Patients with isocitrate dehydrogenase wild-type glioblastoma ages 65 years or older were included in this post hoc analysis. Tumor volumetric and apparent diffusion coefficient (ADC) analyses of serial MRI scans from 67 patients and serial 18FET-PET tumor-to-brain intensity ratios (TBRs) from 31 patients were analyzed blinded for treatment arm and outcome. Multivariate Cox regression analysis was done to account for established prognostic factors and treatment arm. RESULTS Overall survival benefit from bevacizumab plus radiotherapy compared with radiotherapy alone was observed for larger pretreatment MRI contrast-enhancing tumor [HR per cm3 0.94; 95% confidence interval (CI), 0.89-0.99] and for higher ADC (HR 0.18; CI, 0.05-0.66). Higher 18FET-TBR on pretreatment PET scans was associated with inferior overall survival in both arms. Response assessed by standard MRI-based Response Assessment in Neuro-Oncology criteria was associated with overall survival in the bevacizumab plus radiotherapy arm by trend only (P = 0.09). High 18FET-TBR of noncontrast-enhancing tumor portions during bevacizumab therapy was associated with inferior overall survival on multivariate analysis (HR 5.97; CI, 1.16-30.8). CONCLUSIONS Large pretreatment contrast-enhancing tumor mass and higher ADCs identify patients who may experience a survival benefit from bevacizumab plus radiotherapy. Persistent 18FET-PET signal of no longer contrast-enhancing tumor after concomitant bevacizumab plus radiotherapy suggests pseudoresponse and predicts poor outcome.
Collapse
Affiliation(s)
- Hans-Georg Wirsching
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.
| | - Ulrich Roelcke
- Department of Neurology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Jonathan Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Thomas Hundsberger
- Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Andreas F Hottinger
- Departments of Clinical Neurosciences and Medical Oncology, University Hospital Lausanne, Lausanne, Switzerland
| | - Roger von Moos
- Department of Medical Oncology, Cantonal Hospital Graubuenden, Chur, Switzerland
| | - Francesca Caparrotti
- Department of Radiation Oncology, University Hospital Geneva, Geneva, Switzerland
| | - Katrin Conen
- Department of Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Luca Remonda
- Department of Neuroradiology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Patrick Roth
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Adrian Ochsenbein
- Department of Medical Oncology, Inselspital, Berne University Hospital, University of Berne, Berne, Switzerland
| | - Ghazaleh Tabatabai
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|