1
|
A Laboratory-Friendly CTC Identification: Comparable Double-Immunocytochemistry with Triple-Immunofluorescence. Cancers (Basel) 2022; 14:cancers14122871. [PMID: 35740537 PMCID: PMC9221448 DOI: 10.3390/cancers14122871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Tumor cells that circulate in the peripheral blood of patients with solid tumors are called circulating tumor cells. Since the source of circulating tumor cells are from primary cancer sites, metastatic sites, and/or a disseminated tumor cell pool, these cells have clinical significance. The circulating tumor cells offer a rare glimpse of the evolution of the tumor and its response/resistance to treatment in a real-time non-invasive manner. Although the clinical relevance of circulating tumor cells is undeniable, the routine use of these cells remains limited due to the elusive nature of the cells, which demands highly sophisticated and costly instrumentation. We presented a specific and sensitive laboratory-friendly parallel double-detection format method for the simultaneous isolation and identification of circulating tumor cells from peripheral blood of 91 consented and enrolled patients with tumors of the lung, endometrium, ovary, esophagus, prostate, and liver. Our user-friendly cost-effective circulating tumor cells detection technique has the potency to facilitate the routine use of circulating tumor cells detection even in community-based cancer centers for prognosis, before and after surgery, which will provide a unique opportunity to move cancer diagnostics forward. Abstract The source of circulating tumor cells (CTC) in the peripheral blood of patients with solid tumors are from primary cancer, metastatic sites, and a disseminated tumor cell pool. As 90% of cancer-related deaths are caused by metastatic progression and/or resistance-associated treatment failure, the above fact justifies the undeniable predictive and prognostic value of identifying CTC in the bloodstream at stages of the disease progression and resistance to treatment. Yet enumeration of CTC remains far from a standard routine procedure either for post-surgery follow-ups or ongoing adjuvant therapy. The most compelling explanation for this paradox is the absence of a convenient, laboratory-friendly, and cost-effective method to determine CTC. We presented a specific and sensitive laboratory-friendly parallel double-detection format method for the simultaneous isolation and identification of CTC from peripheral blood of 91 consented and enrolled patients with various malignant solid tumors of the lung, endometrium, ovary, esophagus, prostate, and liver. Using a pressure-guided method, we used the size-based isolation to capture CTC on a commercially available microfilter. CTC identification was carried out by two expression marker-based independent staining methods, double-immunocytochemistry parallel to standard triple-immunofluorescence. The choice of markers included specific markers for epithelial cells, EpCAM and CK8,18,19, and exclusion markers for WBC, CD45. We tested the method’s specificity based on the validation of the staining method, which included positive and negative spiked samples, blood from the healthy age-matched donor, healthy age-matched leucopaks, and blood from metastatic patients. Our user-friendly cost-effective CTC detection technique may facilitate the regular use of CTC detection even in community-based cancer centers for prognosis, before and after surgery.
Collapse
|
2
|
Lee SZ, Schubert JP, Prowse SJB, Bryant RV. Are we underutilising computer tomography colonography in Australia? Intern Med J 2022; 52:864-867. [PMID: 35451543 PMCID: PMC9321686 DOI: 10.1111/imj.15778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022]
Abstract
Computed tomography colonography (CTC) is a safe and accurate tool for colorectal cancer (CRC) screening in both symptomatic and asymptomatic patients. CTC requires dedicated radiological expertise and demonstrates a high sensitivity and specificity in polyp detection, which is similar to optical colonoscopy (OC). Newer preparation techniques for CTC, such as faecal tagging without catharsis might further improve both the tolerability and accuracy of the test. While exposure to ionising radiation, lack of capacity for therapeutic intervention and potentially diminished sensitivity for flat serrated polyps are limitations of CTC, the technique has a role in select populations. CTC should be considered in frail or elderly patients at high anaesthetic risk for OC, patients with stricturing colonic lesions as well as incomplete colonoscopy, or in patients at risk of delayed access to timely OC. With an ever‐growing demand for endoscopic services, increased utilisation of CTC could reduce waiting times for colonoscopy, thereby broadening access to timely and effective CRC screening. Further research is required to improve further the detection of flat lesions, including sessile serrated polyps.
Collapse
Affiliation(s)
- Shawn Z Lee
- Medical School, Faculty of Health, University of Adelaide, Adelaide, South Australia, Australia.,IBD Service, Department of Gastroenterology, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Jonathon P Schubert
- Medical School, Faculty of Health, University of Adelaide, Adelaide, South Australia, Australia.,IBD Service, Department of Gastroenterology, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Simon J B Prowse
- IBD Service, Department of Gastroenterology, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Robert V Bryant
- Medical School, Faculty of Health, University of Adelaide, Adelaide, South Australia, Australia.,IBD Service, Department of Gastroenterology, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Adelaide, South Australia, Australia.,Basil Hetzel Institute for Translational Health Research, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Pickhardt PJ, Graffy PM, Weigman B, Deiss-Yehiely N, Hassan C, Weiss JM. Diagnostic Performance of Multitarget Stool DNA and CT Colonography for Noninvasive Colorectal Cancer Screening. Radiology 2020; 297:120-129. [PMID: 32779997 DOI: 10.1148/radiol.2020201018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BackgroundMultitarget stool DNA (mt-sDNA) screening has increased rapidly since simultaneous approval by the U.S. Food and Drug Administration and Centers for Medicare and Medicaid Services in 2014, whereas CT colonography screening remains underused and is not covered by Centers for Medicare and Medicaid Services.PurposeTo report postapproval clinical experience with mt-sDNA screening for colorectal cancer (CRC) and compare results with CT colonography screening at the same center.Materials and MethodsIn this retrospective cohort study, asymptomatic adults underwent clinical mt-sDNA screening during a 5-year interval (2014-2019). Electronic medical records were searched to verify test results and document subsequent optical colonoscopy and histopathologic findings. A similar analysis was performed for CT colonography screening during a 15-year interval (2004-2019), with consideration of thresholds for positivity of both 6-mm and 10-mm polyp sizes. χ2 or two-sample t tests were used for group comparisons.ResultsA total of 3987 asymptomatic adult patients (mean age, 64 years ± 9 [standard deviation]; 2567 women) underwent mt-sDNA screening and 9656 patients (mean age, 57 years ± 8; 5200 women) underwent CT colonography. Test-positive rates for mt-sDNA and for 6-mm- and 10-mm-threshold CT colonography were 15.2%, 16.4%, and 6.7%, respectively. Optical colonoscopy follow-up rates for positive results of mt-sDNA and 6-mm- and 10-mm-threshold CT colonography were 13.1%, 12.3%, and 5.9%, respectively. Positive predictive values (PPVs) for any neoplasm 6 mm or greater, advanced neoplasia, and CRC for mt-sDNA were 54.2%, 22.7%, and 1.9% respectively; for 6-mm-threshold CT colonography, PPVs were 76.8%, 44.3%, and 2.7%; for 10-mm-threshold CT colonography, PPVs were 84.5%, 75.2%, and 5.2%, respectively (P < .001 for mt-sDNA vs CT colonography for all except 6-mm CRC at CT colonography). For mt-sDNA versus 6-mm-threshold CT colonography, overall detection rates for advanced neoplasia were 2.7% and 5.0%, respectively (P < .001); corresponding detection rates for CRC were 0.23% and 0.31%, respectively (P = .43).ConclusionThe detection rates of advanced neoplasia at CT colonography screening were greater than those of multitarget stool DNA. Detection rates were similar for colorectal cancer.© RSNA, 2020See also the editorial by Yee in this issue.
Collapse
Affiliation(s)
- Perry J Pickhardt
- From the Department of Radiology (P.J.P., P.M.G., B.W.) and the Department of Medicine (N.D.Y., J.M.W.), University of Wisconsin School of Medicine & Public Health, E3/311 Clinical Science Center, 600 Highland Ave, Madison, WI 53792-3252; and Digestive Endoscopy Unit, Nuovo Regina Margherita Hospital, Rome, Italy (C.H.)
| | - Peter M Graffy
- From the Department of Radiology (P.J.P., P.M.G., B.W.) and the Department of Medicine (N.D.Y., J.M.W.), University of Wisconsin School of Medicine & Public Health, E3/311 Clinical Science Center, 600 Highland Ave, Madison, WI 53792-3252; and Digestive Endoscopy Unit, Nuovo Regina Margherita Hospital, Rome, Italy (C.H.)
| | - Benjamin Weigman
- From the Department of Radiology (P.J.P., P.M.G., B.W.) and the Department of Medicine (N.D.Y., J.M.W.), University of Wisconsin School of Medicine & Public Health, E3/311 Clinical Science Center, 600 Highland Ave, Madison, WI 53792-3252; and Digestive Endoscopy Unit, Nuovo Regina Margherita Hospital, Rome, Italy (C.H.)
| | - Nimrod Deiss-Yehiely
- From the Department of Radiology (P.J.P., P.M.G., B.W.) and the Department of Medicine (N.D.Y., J.M.W.), University of Wisconsin School of Medicine & Public Health, E3/311 Clinical Science Center, 600 Highland Ave, Madison, WI 53792-3252; and Digestive Endoscopy Unit, Nuovo Regina Margherita Hospital, Rome, Italy (C.H.)
| | - Cesare Hassan
- From the Department of Radiology (P.J.P., P.M.G., B.W.) and the Department of Medicine (N.D.Y., J.M.W.), University of Wisconsin School of Medicine & Public Health, E3/311 Clinical Science Center, 600 Highland Ave, Madison, WI 53792-3252; and Digestive Endoscopy Unit, Nuovo Regina Margherita Hospital, Rome, Italy (C.H.)
| | - Jennifer M Weiss
- From the Department of Radiology (P.J.P., P.M.G., B.W.) and the Department of Medicine (N.D.Y., J.M.W.), University of Wisconsin School of Medicine & Public Health, E3/311 Clinical Science Center, 600 Highland Ave, Madison, WI 53792-3252; and Digestive Endoscopy Unit, Nuovo Regina Margherita Hospital, Rome, Italy (C.H.)
| |
Collapse
|
4
|
Mankowski Gettle L, Kim DH, Pickhardt PJ. Anorectal pitfalls in computed tomography colonography. Abdom Radiol (NY) 2019; 44:3606-3624. [PMID: 31432213 DOI: 10.1007/s00261-019-02186-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is a wide array of pathological lesions seen in the anorectal region with CT colonography (CTC), much of which is unique to this location. Many relatively common findings in the anorectal region are typically benign, but can be misinterpreted as malignant. There are also technique-related pitfalls that can impede accurate diagnosis of anorectal findings at CTC. Understanding common and uncommon lesions in the anorectal region as well as recognizing technical pitfalls will optimize interpretation of CTC and decrease the number of missed cancers and false positives. This review will systematically cover that they key pitfalls confronting the radiologist at CTC interpretation of the anorectal region, primarily dividing them into those related to underlying anatomy and those related to technique. Tips for how to effectively handle these potential pitfalls will also be discussed.
Collapse
Affiliation(s)
- Lori Mankowski Gettle
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, E3/380 Clinical Science Center, Madison, WI, 53792, USA
| | - David H Kim
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, E3/380 Clinical Science Center, Madison, WI, 53792, USA
| | - Perry J Pickhardt
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, E3/380 Clinical Science Center, Madison, WI, 53792, USA.
| |
Collapse
|