5
|
Endrikat J, Gutberlet M, Barkhausen J, Schöckel L, Bhatti A, Harz C, Hoffmann KT. Clinical Efficacy of Gadobutrol: Review of Over 25 Years of Use Exceeding 100 Million Administrations. Invest Radiol 2024; 59:345-358. [PMID: 37972293 DOI: 10.1097/rli.0000000000001041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
BACKGROUND Gadobutrol has been administered more than 100 million times worldwide, since February 1998, that is, over the last 25 years. Numerous clinical studies in a broad range of indications document the long-term experience with gadobutrol. OBJECTIVE The aim of this study was to provide a literature-based overview on gadobutrol's efficacy in 9 approved indications and use in children. MATERIALS AND METHODS Efficacy results in patients of all age groups including sensitivity, specificity, accuracy, and positive/negative predictive values were identified by a systematic literature search on Embase until December 31, 2022. Nine approved indications were considered: central nervous system (CNS), magnetic resonance angiography (MRA), breast, heart, prostate, kidney, liver, musculoskeletal, whole body, and various indications in children. RESULTS Sixty-five publications (10 phase III, 2 phase IV, 53 investigator-initiated studies) reported diagnostic efficacy results obtained from 7806 patients including 271 children, at 369 centers worldwide. Indication-specific sensitivity ranges were 59%-98% (CNS), 53%-100% (MRA), 80%-100% (breast), 64%-90% (heart), 64%-96% (prostate), 71-85 (kidney), 79%-100% (liver), 53%-98% (musculoskeletal), and 78%-100% (children). Indication-specific specificity ranges were 75%-100% (CNS), 64%-99% (MRA), 58%-98% (breast), and 47%-100% (heart). CONCLUSIONS The evaluated body of evidence, consisting of 65 studies with 7806 patients, including 271 children and 7535 adults, showed that gadobutrol is an efficacious magnetic resonance imaging contrast agent for all age groups in various approved indications throughout the whole body.
Collapse
Affiliation(s)
- Jan Endrikat
- From the Radiology, Bayer AG, Berlin, Germany (J.E., L.S., C.H.); Department of Gynecology, Obstetrics, and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany (J.E.); Department of Diagnostic and Interventional Radiology, University of Leipzig, Heart Center, Leipzig, Germany (M.G.); Department of Radiology and Nuclear Medicine, University Hospital Schleswig Holstein-Campus Luebeck, Luebeck, Germany (J.B.); Bayer US LLC, Benefit-Risk Management Pharmacovigilance, Whippany, NJ (A.B.); and Department of Neuroradiology, University of Leipzig, Leipzig, Germany (K.-T.H.)
| | | | | | | | | | | | | |
Collapse
|
7
|
Wamelink IJHG, Azizova A, Booth TC, Mutsaerts HJMM, Ogunleye A, Mankad K, Petr J, Barkhof F, Keil VC. Brain Tumor Imaging without Gadolinium-based Contrast Agents: Feasible or Fantasy? Radiology 2024; 310:e230793. [PMID: 38319162 PMCID: PMC10902600 DOI: 10.1148/radiol.230793] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 02/07/2024]
Abstract
Gadolinium-based contrast agents (GBCAs) form the cornerstone of current primary brain tumor MRI protocols at all stages of the patient journey. Though an imperfect measure of tumor grade, GBCAs are repeatedly used for diagnosis and monitoring. In practice, however, radiologists will encounter situations where GBCA injection is not needed or of doubtful benefit. Reducing GBCA administration could improve the patient burden of (repeated) imaging (especially in vulnerable patient groups, such as children), minimize risks of putative side effects, and benefit costs, logistics, and the environmental footprint. On the basis of the current literature, imaging strategies to reduce GBCA exposure for pediatric and adult patients with primary brain tumors will be reviewed. Early postoperative MRI and fixed-interval imaging of gliomas are examples of GBCA exposure with uncertain survival benefits. Half-dose GBCAs for gliomas and T2-weighted imaging alone for meningiomas are among options to reduce GBCA use. While most imaging guidelines recommend using GBCAs at all stages of diagnosis and treatment, non-contrast-enhanced sequences, such as the arterial spin labeling, have shown a great potential. Artificial intelligence methods to generate synthetic postcontrast images from decreased-dose or non-GBCA scans have shown promise to replace GBCA-dependent approaches. This review is focused on pediatric and adult gliomas and meningiomas. Special attention is paid to the quality and real-life applicability of the reviewed literature.
Collapse
Affiliation(s)
- Ivar J. H. G. Wamelink
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| | - Aynur Azizova
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| | - Thomas C. Booth
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| | - Henk J. M. M. Mutsaerts
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| | - Afolabi Ogunleye
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| | - Kshitij Mankad
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| | - Jan Petr
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| | - Frederik Barkhof
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| | - Vera C. Keil
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| |
Collapse
|
9
|
Haase R, Pinetz T, Bendella Z, Kobler E, Paech D, Block W, Effland A, Radbruch A, Deike-Hofmann K. Reduction of Gadolinium-Based Contrast Agents in MRI Using Convolutional Neural Networks and Different Input Protocols: Limited Interchangeability of Synthesized Sequences With Original Full-Dose Images Despite Excellent Quantitative Performance. Invest Radiol 2023; 58:420-430. [PMID: 36735399 DOI: 10.1097/rli.0000000000000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The purpose of this study was to implement a state-of-the-art convolutional neural network used to synthesize artificial T1-weighted (T1w) full-dose images from corresponding noncontrast and low-dose images (using various settings of input sequences) and test its performance on a patient population acquired prospectively. MATERIALS AND METHODS In this monocentric, institutional review board-approved study, a total of 138 participants were included who received an adapted imaging protocol with acquisition of a T1w low dose after administration of 10% of the standard dose and acquisition of a T1w full dose after administration of the remaining 90% of the standard dose of a gadolinium-containing contrast agent. A total of 83 participants formed the training sample (51.7 ± 16.5 years, 36 women), 25 the validation sample (55.3 ± 16.4 years, 11 women), and 30 the test sample (55.0 ± 15.0 years, 9 women). Four input settings were differentiated: only the T1w noncontrast and T1w low-dose images (standard setting), only the T1w noncontrast and T1w low-dose images with a prolonged postinjection time of 5 minutes (5-minute setting), multiple noncontrast sequences (T1w, T2w, diffusion) and the T1w low-dose images (extended setting), and only noncontrast sequences (T1w, T2w, diffusion) were used (zero-dose setting). For each setting, a deep neural network was trained to synthesize artificial T1w full-dose images, which were assessed on the test sample using an objective evaluation based on quantitative metrics and a subjective evaluation through a reader-based study. Three readers scored the overall image quality, the interchangeability in regard to the clinical conclusion compared with the true T1w full-dose sequence, the contrast enhancement of lesions, and their conformity to the respective references in the true T1w full dose. RESULTS Quantitative analysis of the artificial T1w full-dose images of the standard setting provided a peak signal-to-noise ratio of 33.39 ± 0.62 (corresponding to an average improvement of the low-dose sequences of 5.2 dB) and a structural similarity index measure of 0.938 ± 0.005. In the 4-fold cross-validation, the extended setting yielded similar performance to the standard setting in terms of peak signal-to-noise ratio ( P = 0.20), but a slight improvement in structural similarity index measure ( P < 0.0001). For all settings, the reader study found comparable overall image quality between the original and artificial T1w full-dose images. The proportion of scans scored as fully or mostly interchangeable was 55%, 58%, 43%, and 3% and the average counts of false positives per case were 0.42 ± 0.83, 0.34 ± 0.71, 0.82 ± 1.15, and 2.00 ± 1.07 for the standard, 5-minute, extended, and zero-dose setting, respectively. Using a 5-point Likert scale (0 to 4, 0 being the worst), all settings of synthesized full-dose images showed significantly poorer contrast enhancement of lesions compared with the original full-dose sequence (difference of average degree of contrast enhancement-standard: -0.97 ± 0.83, P = <0.001; 5-minute: -0.93 ± 0.91, P = <0.001; extended: -0.96 ± 0.97, P = <0.001; zero-dose: -2.39 ± 1.14, P = <0.001). The average scores of conformity of the lesions compared with the original full-dose sequence were 2.25 ± 1.21, 2.22 ± 1.27, 2.24 ± 1.25, and 0.73 ± 0.93 for the standard, 5-minute, extended, and zero-dose setting, respectively. CONCLUSIONS The tested deep learning algorithm for synthesis of artificial T1w full-dose sequences based on images after administration of only 10% of the standard dose of a gadolinium-based contrast agent showed very good quantitative performance. Despite good image quality in all settings, both false-negative and false-positive signals resulted in significantly limited interchangeability of the synthesized sequences with the original full-dose sequences.
Collapse
Affiliation(s)
| | - Thomas Pinetz
- Institute of Applied Mathematics, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Zeynep Bendella
- From the Department of Neuroradiology, University Medical Center Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn
| | - Erich Kobler
- From the Department of Neuroradiology, University Medical Center Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn
| | | | - Wolfgang Block
- From the Department of Neuroradiology, University Medical Center Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn
| | - Alexander Effland
- Institute of Applied Mathematics, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | | |
Collapse
|