1
|
Nagy E, Sobh MM, Abdalbary M, Elnagar S, Elrefaey R, Shabaka S, Elshabrawy N, Shemies R, Tawfik M, Santos CGS, Barreto FC, El-Husseini A. Is Adynamic Bone Always a Disease? Lessons from Patients with Chronic Kidney Disease. J Clin Med 2022; 11:jcm11237130. [PMID: 36498703 PMCID: PMC9736225 DOI: 10.3390/jcm11237130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Renal osteodystrophy (ROD) is a common complication of end-stage kidney disease that often starts early with loss of kidney function, and it is considered an integral part in management of patients with chronic kidney disease (CKD). Adynamic bone (ADB) is characterized by suppressed bone formation, low cellularity, and thin osteoid seams. There is accumulating evidence supporting increasing prevalence of ADB, particularly in early CKD. Contemporarily, it is not very clear whether it represents a true disease, an adaptive mechanism to prevent bone resorption, or just a transitional stage. Several co-players are incriminated in its pathogenesis, such as age, diabetes mellitus, malnutrition, uremic milieu, and iatrogenic factors. In the present review, we will discuss the up-to-date knowledge of the ADB and focus on its impact on bone health, fracture risk, vascular calcification, and long-term survival. Moreover, we will emphasize the proper preventive and management strategies of ADB that are pivotal issues in managing patients with CKD. It is still unclear whether ADB is always a pathologic condition or whether it can represent an adaptive process to suppress bone resorption and further bone loss. In this article, we tried to discuss this hard topic based on the available limited information in patients with CKD. More studies are needed to be able to clearly address this frequent ROD finding.
Collapse
Affiliation(s)
- Eman Nagy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Mahmoud M. Sobh
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Abdalbary
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Sherouk Elnagar
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Rabab Elrefaey
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Shimaa Shabaka
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Nehal Elshabrawy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Rasha Shemies
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Mona Tawfik
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Cássia Gomes S. Santos
- Department of Internal Medicine, Division of Nephrology, Federal University of Paraná, Curitiba 80060-00, PR, Brazil
| | - Fellype C. Barreto
- Department of Internal Medicine, Division of Nephrology, Federal University of Paraná, Curitiba 80060-00, PR, Brazil
| | - Amr El-Husseini
- Division of Nephrology & Bone and Mineral Metabolism, University of Kentucky, Lexington, KY 40536-0298, USA
- Correspondence: ; Tel.: +1-859-218-0934; Fax: +1-859-323-0232
| |
Collapse
|
2
|
Möhlhenrich SC, Kniha K, Heitzer M, Magnuska Z, Hermanns-Sachweh B, Gremse F, Chhatwani S, Hölzle F, Modabber A, Danesh G. Correlations between radiological and histological findings of bone remodelling and root resorption in a rodent cleft model. Head Face Med 2022; 18:33. [DOI: 10.1186/s13005-022-00338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/03/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Background
The evaluation of bone remodelling and dental root resorption can be performed by histological techniques or micro-computed tomography (micro-CT). The present study aimed to evaluate the relationship between these two procedures in the context of cleft repair in a rat model.
Methods
The reconstructed maxillae and the orthodontically-moved first molar of 12 rats were analysed for correlations between the histological and radiological findings retrospectively. The alveolar cleft repairs were performed using bone autografts or (human) xenografts. Four weeks after the operation, the intervention of the first molar protraction was initiated and lasted for eight weeks. The newly formed bone and the root resorption lacunae were determined via histology. In the micro-CT analysis, the average change of bone mineral density (BMD), bone volume fraction (BV/TV), trabecular thickness and trabecular separation of the jaw, as well as the volume of the root resorptions were determined. The Pearson correlation coefficient was applied to study the associations between groups.
Results
Positive correlations were found only between the newly formed bone (histology) and BMD changes (micro-CT) in the autograft group (r = 0.812, 95% CI: 0.001 to 0.979, p = 0.05). The relationship of newly formed bone and BV/TV was similar but not statistically significant (r = 0.691, 95% CI: −0.274 to 0.963, p = 0.013). Regarding root resorption, no significant correlations were found.
Conclusions
Due to the lack of correlation between histological and radiological findings of bone remodelling and the development of root resorptions, both methods should be combined in this cleft model in rats for a comprehensive analysis.
Collapse
|
3
|
Pichone A, Gomes CP, Lima LFC, Moreira CA, Paranhos-Neto FDP, Madeira M, Lopes RT, Farias MLF, Leite Jr. M. Assessment of trabecular and cortical parameters using high-resolution peripheral quantitative computed tomography, histomorphometry and microCT of iliac crest bone core in hemodialysis patients. Bone Rep 2022; 16:101173. [PMID: 35198659 PMCID: PMC8850668 DOI: 10.1016/j.bonr.2022.101173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
Patients with end-stage renal disease develop changes in bone quality and quantity, which can be assessed using different methods. This study aimed to compare and to correlate bone parameters obtained in vivo using high-resolution peripheral quantitative computed tomography (HR-pQCT) with those obtained by bone biopsy using histomorphometry and microcomputed tomography (microCT) analysis of the iliac crest core, and to evaluate if HR-pQCT is helpful in aiding with categorization of those with high turnover. Twenty hemodialysis patients, 13 females (7 postmenopausal), underwent bone biopsy from 2018 to 2020. The mean age was 48.5 ± 10.6 years, and the mean hemodialysis vintage was 15 years. Histomorphometry identified mineralization defects, low turnover, and high turnover in 65%, 45%, and 35% of the patients, respectively. The highest values of trabecular bone volume (BV/TV) were obtained by histomorphometry, while the highest values of cortical thickness (Ct.Th) were obtained by HR-pQCT at the distal tibia. Moderate correlations were found between BV/TV values obtained by microCT of the bone core and HR-pQCT at the distal radius (r = 0.531, p = 0.016) and at the distal tibia (r = 0.536, p = 0.015). BV/TV values obtained from the bone core by histomorphometry and microCT were also significantly correlated (r = 0.475, p = 0.04). Regarding Ct.Th, there was a strong correlation between the radius and tibia HR-pQCT (r = 0.800, p < 0.001), between bone core microCT and the distal radius HR-pQCT (r = 0.610, p < 0.01), as between histomorphometry and microCT (r = 0.899, p < 0.01). In groups classified by bone turnover, patients with high turnover presented lower BV/TV, Tb.N, Tb.Th, and Ct.Th than those with low turnover in peripheral sites using HR-pQCT. By this method, it was possible to identify low turnover from tibia BV/TV > 12,4% plus Tb.Sp ≤ 0.667 mm (AUC 0.810, 95% CI 0.575 to 0.948) and high turnover from total bone mineral density (BMD) ≤ 154.2 mg HA/cm3 (AUC 0.860, 95% CI 0.633 to 0.982, p < 0.001) and cortical BMD ≤ 691.6 mg HA/cm3 (AUC 0.840, 95% CI 0.609 to 0.963, p < 0.001). In conclusion, HR-pQCT had significant correlation with iliac crest bone in BV/TV and Ct.Th, which are known to provide bone strength. This method is quick and non-invasive and may be helpful in categorizing those with high versus low turnover in hemodialysis patients. Bone structure in hemodialysis patients can be assessed using different methods. There was correlation of BV/TV and Ct.Th between histomorphometry and bone core microCT. BV/TV and Ct.Th values obtained by radius HR-pQCT and bone core microCT were correlated. High turnover patients had lower BV/TV, Tb.N, Tb.Th, and Ct.Th by HR-pQCT. HR-pQCT was able to discriminate low and high turnover in hemodialysis patients.
Collapse
Affiliation(s)
- Alinie Pichone
- Division of Nephrology, HUCFF, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Corresponding author at: Hospital Universitario Clementino Fraga Filho – Universidade Federal do Rio de Janeiro, Rua Professor Rodolpho Paulo Rocco, 255/Serviço de nefrologia - sétimo andar, Rio de Janeiro, RJ 21941-617, Brazil.
| | - Carlos Perez Gomes
- Division of Nephrology, HUCFF, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Felipe Cardoso Lima
- Laboratory of Nuclear Instrumentation, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Aguiar Moreira
- Division of Endocrinology (SEMPR), Internal Medicine Department of Federal University of Parana & Academic Research Center of Pro Renal Institute, Curitiba, Brazil
| | | | - Miguel Madeira
- Division of Endocrinology, HUCFF, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Tadeu Lopes
- Laboratory of Nuclear Instrumentation, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maurilo Leite Jr.
- Division of Nephrology, HUCFF, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Standardization of mineral density maps of physiologic and pathologic biominerals in humans using cone-beam CT and micro CT. Dent Mater 2022; 38:989-1003. [DOI: 10.1016/j.dental.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/04/2022] [Accepted: 03/19/2022] [Indexed: 11/19/2022]
|
5
|
Meng C, Jørgensen HS, Verlinden L, Bravenboer N, de Loor H, D'Haese PC, Carmeliet G, Evenepoel P. Contemporary kidney transplantation has a limited impact on bone microarchitecture. Bone Rep 2022; 16:101172. [PMID: 35198658 PMCID: PMC8851083 DOI: 10.1016/j.bonr.2022.101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/03/2022] [Indexed: 11/10/2022] Open
Abstract
Bone microarchitecture is an important component of bone quality and disturbances may reduce bone strength and resistance to trauma. Kidney transplant recipients have an excess risk of fractures, and bone loss affecting both trabecular and cortical bone compartments have been demonstrated after kidney transplantation. The primary aim of this study was to investigate the impact of kidney transplantation on trabecular and cortical bone microarchitecture, assessed by histomorphometry and micro computed tomography (μCT). Iliac crest bone biopsies, analyzed by bone histomorphometry and μCT, were performed at time of kidney transplantation and 12 months post-transplantation in an unselected cohort of 30 patients. Biochemical markers of mineral metabolism and bone turnover were measured at both time-points. At 12 months post-transplantation, bone turnover was low in 5 (17%) and normal in 25 (83%) patients. By histomorphometry, bone remodeling normalized, with decreases in eroded perimeters (4.0 to 2.1%, p = 0.02) and number of patients with marrow fibrosis (41 to 0%, p < 0.001). By μCT, trabecular thickness (134 to 125 μM, p = 0.003) decreased slightly. Other parameters of bone volume and microarchitecture, including cortical thickness (729 to 713 μm, p = 0.73) and porosity (10.2 to 9.5%, p = 0.15), remained stable. We conclude that kidney transplantation with current immunosuppressive protocols has a limited impact on bone microarchitecture. Bone structure after kidney transplantation was explored using biopsy, μCT, and DXA. Modest trabecular bone loss was detected in the first post-transplant year. Cortical thickness and porosity were overall stable post-transplant. Contemporary kidney transplantation has minimal impact on bone microarchitecture.
Collapse
|
6
|
Li M, Bai J, Tao H, Hao L, Yin W, Ren X, Gao A, Li N, Wang M, Fang S, Xu Y, Chen L, Yang H, Wang H, Pan G, Geng D. Rational integration of defense and repair synergy on PEEK osteoimplants via biomimetic peptide clicking strategy. Bioact Mater 2022; 8:309-324. [PMID: 34541403 PMCID: PMC8427090 DOI: 10.1016/j.bioactmat.2021.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Polyetheretherketone (PEEK) has been widely used as orthopedic and dental materials due to excellent mechanical and physicochemical tolerance. However, its biological inertness, poor osteoinduction, and weak antibacterial activity make the clinical applications in a dilemma. Inspired by the mussel adhesion mechanism, here we reported a biomimetic surface strategy for rational integration and optimization of anti-infectivity and osteo-inductivity onto PEEK surfaces using a mussel foot proteins (Mfps)-mimic peptide with clickable azido terminal. The peptide enables mussel-like adhesion on PEEK biomaterial surfaces, leaving azido groups for the further steps of biofunctionalizations. In this study, antimicrobial peptide (AMP) and osteogenic growth peptide (OGP) were bioorthogonally clicked on the azido-modified PEEK biomaterials to obtain a dual-effect of host defense and tissue repair. Since bioorthogonal clicking allows precise collocation between AMP and OGP through changing their feeding molar ratios, an optimal PEEK surface was finally obtained in this research, which could long-term inhibit bacterial growth, stabilize bone homeostasis and facilitate interfacial bone regeneration. In a word, this upgraded mussel surface strategy proposed in this study is promising for the surface bioengineering of inert medical implants, in particular, achieving rational integration of multiple biofunctions to match clinical requirements.
Collapse
Affiliation(s)
- Meng Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
- Department of Orthopaedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, Anhui, China
| | - Jiaxiang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Huaqiang Tao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Li Hao
- Department of Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, Anhui, China
| | - Weiling Yin
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Xiaoxue Ren
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Ang Gao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Ning Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Shiyuan Fang
- Department of Orthopaedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, Anhui, China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Liang Chen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| |
Collapse
|
7
|
Pimentel A, Ureña-Torres P, Bover J, Luis Fernandez-Martín J, Cohen-Solal M. Bone Fragility Fractures in CKD Patients. Calcif Tissue Int 2021; 108:539-550. [PMID: 33219822 PMCID: PMC8052229 DOI: 10.1007/s00223-020-00779-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
Chronic kidney diseases (CKD) are associated with mineral and bone diseases (MBD), including pain, bone loss, and fractures. Bone fragility related to CKD includes the risk factors observed in osteoporosis in addition to those related to CKD, resulting in a higher risk of mortality related to fractures. Unawareness of such complications led to a poor management of fractures and a lack of preventive approaches. The current guidelines of the Kidney Disease Improving Global Outcomes (KDIGO) recommend the assessment of bone mineral density if results will impact treatment decision. In addition to bone density, circulating biomarkers of mineral, serum bone turnover markers, and imaging techniques are currently available to evaluate the fracture risk. The purpose of this review is to provide an overview of the epidemiology and pathogenesis of CKD-associated bone loss. The contribution of the current tools and other techniques in development are discussed. We here propose a current view of how to better predict bone fragility and the therapeutic options in CKD.
Collapse
Affiliation(s)
| | - Pablo Ureña-Torres
- AURA Paris-Nord, Saint-Ouen, France
- Necker Hospital, University of Paris Descartes, Department of Renal Physiology, Paris, France
| | - Jordi Bover
- Fundació Puigvert, Universitat Autònoma, IIB Sant Pau, REDinREN, Nephrology Department, Barcelona, Catalonia, Spain
| | - Jose Luis Fernandez-Martín
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), REDinREN del ISCIII, Hospital Universitario Central de Asturias. Universidad de Oviedo, Bone and Mineral Research Unit, Oviedo, Asturias, Spain
| | - Martine Cohen-Solal
- INSERM U1132 & Université de Paris, Hôpital Lariboisière, Department of Rheumatology, Paris, France.
| |
Collapse
|
8
|
Bakkaloglu SA, Bacchetta J, Lalayiannis AD, Leifheit-Nestler M, Stabouli S, Haarhaus M, Reusz G, Groothoff J, Schmitt CP, Evenepoel P, Shroff R, Haffner D. Bone evaluation in paediatric chronic kidney disease: clinical practice points from the European Society for Paediatric Nephrology CKD-MBD and Dialysis working groups and CKD-MBD working group of the ERA-EDTA. Nephrol Dial Transplant 2021; 36:413-425. [PMID: 33245331 DOI: 10.1093/ndt/gfaa210] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 11/13/2022] Open
Abstract
Mineral and bone disorder (MBD) is widely prevalent in children with chronic kidney disease (CKD) and is associated with significant morbidity. CKD may cause disturbances in bone remodelling/modelling, which are more pronounced in the growing skeleton, manifesting as short stature, bone pain and deformities, fractures, slipped epiphyses and ectopic calcifications. Although assessment of bone health is a key element in the clinical care of children with CKD, it remains a major challenge for physicians. On the one hand, bone biopsy with histomorphometry is the gold standard for assessing bone health, but it is expensive, invasive and requires expertise in the interpretation of bone histology. On the other hand, currently available non-invasive measures, including dual-energy X-ray absorptiometry and biomarkers of bone formation/resorption, are affected by growth and pubertal status and have limited sensitivity and specificity in predicting changes in bone turnover and mineralization. In the absence of high-quality evidence, there are wide variations in clinical practice in the diagnosis and management of CKD-MBD in childhood. We present clinical practice points (CPPs) on the assessment of bone disease in children with CKD Stages 2-5 and on dialysis based on the best available evidence and consensus of experts from the CKD-MBD and Dialysis working groups of the European Society for Paediatric Nephrology and the CKD-MBD working group of the European Renal Association-European Dialysis and Transplant Association. These CPPs should be carefully considered by treating physicians and adapted to individual patients' needs as appropriate. Further areas for research are suggested.
Collapse
Affiliation(s)
- Sevcan A Bakkaloglu
- Department of Paediatric Nephrology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Justine Bacchetta
- Department of Paediatric Nephrology, Rheumatology and Dermatology, University Children's Hospital, Lyon, France
| | - Alexander D Lalayiannis
- Renal Unit, UCL Great Ormond Street Hospital for Children Institute of Child Health, London, UK
| | - Maren Leifheit-Nestler
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School Children's Hospital, Hannover, Germany
| | - Stella Stabouli
- First Department of Paediatrics, Aristotle University Thessaloniki, Thessaloniki, Greece
| | - Mathias Haarhaus
- Division of Renal Medicine and Baxter Novum, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Diaverum AB, Stockholm, Sweden
| | - George Reusz
- First Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Jaap Groothoff
- Department of Paediatric Nephrology, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Claus Peter Schmitt
- Division of Paediatric Nephrology, Center for Paediatric and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Pieter Evenepoel
- Department of Microbiology and Immunology, Laboratory of Nephrology, KU Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Rukshana Shroff
- Renal Unit, UCL Great Ormond Street Hospital for Children Institute of Child Health, London, UK
| | - Dieter Haffner
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School Children's Hospital, Hannover, Germany
| | | |
Collapse
|
9
|
Magnesium-alloy rods reinforced bioglass bone cement composite scaffolds with cortical bone-matching mechanical properties and excellent osteoconductivity for load-bearing bone in vivo regeneration. Sci Rep 2020; 10:18193. [PMID: 33097806 PMCID: PMC7585427 DOI: 10.1038/s41598-020-75328-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/12/2020] [Indexed: 12/28/2022] Open
Abstract
Various therapeutic platforms have been developed for repairing bone defects. However, scaffolds possess both cortical bone-matching mechanical properties and excellent osteoconductivity for load-bearing bone defects repair is still challenging in the clinic. In this study, inspired by the structure of the ferroconcrete, a high-strength bifunctional scaffold has been developed by combining surface-modified magnesium alloy as the internal load-bearing skeleton and bioglass-magnesium phosphate bone cement as the osteoconductive matrix. The scaffold combines the high mechanical strength and controllable biodegradability of surface-modified magnesium alloy with the excellent biocompatibility and osteoconductivity of bioglass-magnesium phosphate bone cement, thus providing support for load-bearing bone defects and subsequently bone regeneration. The scaffolds generate hydroxyapatite (HA) during the degrading in simulated body fluid (SBF), with the strength of the scaffold decreasing from 180 to 100 MPa in 6 weeks, which is still sufficient for load-bearing bone. Moreover, the scaffolds showed excellent osteoconductivity in vitro and in vivo. In a New Zealand White Rabbit radius defect model, the scaffolds degrade gradually and are replaced by highly matured new bone tissues, as assessed by image-based analyses (X-ray and Micro-CT) and histological analyses. The bone formation-related proteins such as BMP2, COL1a1 and OCN, all showed increased expression.
Collapse
|
10
|
Benillouche E, Ostertag A, Marty C, Ureña Torres P, Cohen-Solal M. Cortical Bone Microarchitecture in Dialysis Patients. Am J Nephrol 2020; 51:833-838. [PMID: 32911468 DOI: 10.1159/000510064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/08/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The incidence of skeletal fractures is high in dialysis patients. Current available tools are insufficient to predict bone fragility. We analyzed the microarchitecture in patients on dialysis therapy using bone biopsies and peripheral microcomputed tomography. METHODS We analyzed 12 trans-iliac bone biopsies of patients with recent fractures. Bone microarchitecture was assessed in the bone cores by histology (2D-), microcomputed tomography (3D-µCT), and high-resolution peripheral quantitative computed tomography (HR-pQCT) at the tibia. RESULTS Trabecular bone volume/tissue volume was similar in 2D histology and 3D-µCT (p = 0.40), while lower in HR-pQCT (p < 0.01). There was no correlation in trabecular microarchitectural indices between 2-histology and 3D-µCT, or HR-pQCT. The 3D-µCT cortical thickness (Ct.Th) were positively correlated with 2D (p < 0.05), but with HR-pQCT (p = 0.33). Ct.Th was lower in patients with ≥2 vertebral fractures than with one fracture. CONCLUSIONS 3D-µCT is a reliable method for the measurement of cortical bone in bone biopsies. Prospective studies are awaited to address its value in discriminating fracture risk.
Collapse
Affiliation(s)
- Eva Benillouche
- Department of Rheumatology, Lariboisière Hospital, Paris, France
| | - Agnes Ostertag
- INSERM U1132, Université de Paris, Hôpital Lariboisière (APHP), Paris, France
| | - Caroline Marty
- INSERM U1132, Université de Paris, Hôpital Lariboisière (APHP), Paris, France
| | | | - Martine Cohen-Solal
- Department of Rheumatology, Lariboisière Hospital, Paris, France,
- INSERM U1132, Université de Paris, Hôpital Lariboisière (APHP), Paris, France,
| |
Collapse
|
11
|
Holden RM, Mustafa RA, Alexander RT, Battistella M, Bevilacqua MU, Knoll G, Mac-Way F, Reslerova M, Wald R, Acott PD, Feltmate P, Grill A, Jindal KK, Karsanji M, Kiberd BA, Mahdavi S, McCarron K, Molnar AO, Pinsk M, Rodd C, Soroka SD, Vinson AJ, Zimmerman D, Clase CM. Canadian Society of Nephrology Commentary on the Kidney Disease Improving Global Outcomes 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder. Can J Kidney Health Dis 2020; 7:2054358120944271. [PMID: 32821415 PMCID: PMC7412914 DOI: 10.1177/2054358120944271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/06/2020] [Indexed: 12/23/2022] Open
Abstract
Purpose of review: (1) To provide commentary on the 2017 update to the Kidney Disease Improving Global Outcomes (KDIGO) 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD); (2) to apply the evidence-based guideline update for implementation within the Canadian health care system; (3) to provide comment on the care of children with chronic kidney disease (CKD); and (4) to identify research priorities for Canadian patients. Sources of information: The KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of CKD-MBD. Methods: The commentary committee co-chairs selected potential members based on their knowledge of the Canadian kidney community, aiming for wide representation from relevant disciplines, academic and community centers, and different geographical regions. Key findings: We agreed with many of the recommendations in the clinical practice guideline on the diagnosis, evaluation, prevention, and treatment of CKD-MBD. However, based on the uncommon occurrence of abnormalities in calcium and phosphate and the low likelihood of severe abnormalities in parathyroid hormone (PTH), we recommend against screening and monitoring levels of calcium, phosphate, PTH, and alkaline phosphatase in adults with CKD G3. We suggest and recommend monitoring these parameters in adults with CKD G4 and G5, respectively. In children, we agree that monitoring for CKD-MBD should begin in CKD G2, but we suggest measuring ionized calcium, rather than total calcium or calcium adjusted for albumin. With regard to vitamin D, we suggest against routine screening for vitamin D deficiency in adults with CKD G3-G5 and G1T-G5T and suggest following population health recommendations for adequate vitamin D intake. We recommend that the measurement and management of bone mineral density (BMD) be according to general population guidelines in CKD G3 and G3T, but we suggest against routine BMD testing in CKD G4-G5, CKD G4T-5T, and in children with CKD. Based on insufficient data, we also recommend against routine bone biopsy in clinical practice for adults with CKD or CKD-T, or in children with CKD, although we consider it an important research tool. Limitations: The committee relied on the evidence summaries produced by KDIGO. The CSN committee did not replicate or update the systematic reviews.
Collapse
Affiliation(s)
- Rachel M Holden
- Division of Nephrology, Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Reem A Mustafa
- Division of Nephrology and Hypertension, Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, USA.,Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - R Todd Alexander
- Department of Pediatrics and Physiology, University of Alberta, Edmonton, Canada
| | - Marisa Battistella
- University Health Network, Leslie Dan Faculty of Pharmacy, University of Toronto, ON, Canada
| | - Micheli U Bevilacqua
- Division of Nephrology, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Greg Knoll
- Division of Nephrology, The Ottawa Hospital, ON, Canada
| | - Fabrice Mac-Way
- Division of Nephrology, CHU de Québec, Hôtel-Dieu de Québec Hospital, Université Laval, Québec City, QC, Canada
| | - Martina Reslerova
- Nephrology Section, St. Boniface General Hospital, University of Manitoba, Winnipeg, Canada
| | - Ron Wald
- Division of Nephrology, St. Michael's Hospital, University of Toronto, ON, Canada
| | - Philip D Acott
- Division of Nephrology, Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Patrick Feltmate
- Department of Geriatric Medicine, Dalhousie University, Halifax, NS, Canada
| | - Allan Grill
- Department of Family & Community Medicine, University of Toronto, ON, Canada
| | - Kailash K Jindal
- Division of Nephrology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Meena Karsanji
- Professional Practice, Vancouver Coastal Health, Richmond, BC, Canada
| | - Bryce A Kiberd
- Division of Nephrology, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Sara Mahdavi
- Department of Nutritional Sciences, University of Toronto, ON, Canada.,Department of Nephrology, Scarborough Health Network, ON, Canada
| | - Kailee McCarron
- Nova Scotia Renal Program, Nova Scotia Health Authority, Halifax, Canada
| | - Amber O Molnar
- Division of Nephrology, McMaster University, Hamilton, ON, Canada
| | - Maury Pinsk
- Division of Nephrology, Department of Pediatrics & Child Health, University of Manitoba, Winnipeg, Canada
| | - Celia Rodd
- Division of Diabetes & Endocrinology, Department of Pediatrics & Child Health, University of Manitoba, Winnipeg, Canada
| | - Steven D Soroka
- Division of Nephrology, Department of Medicine, Dalhousie University, NSHA Renal Program and Pharmacy Services, Halifax, NS, Canada
| | - Amanda J Vinson
- Division of Nephrology, Dalhousie University, Halifax, NS, Canada
| | - Deborah Zimmerman
- Division of Nephrology, Department of Medicine, University of Ottawa, ON, Canada
| | - Catherine M Clase
- Division of Nephrology, Department of Medicine, Department of Health Research, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Kidney disease imparts profound skeletal changes, and unlike many other skeletal diseases, cortical bone is predominantly impacted. Significant advances in medical imaging have led to our ability to now obtain high-resolution three-dimensional views of cortical bone. This paper overviews recent work focused on cortical bone imaging, specifically cortical porosity, in kidney disease. RECENT FINDINGS Although a number of clinical papers have used high-resolution imaging to assess cortical bone porosity, the most impactful work involves longitudinal study designs that have assessed cortical porosity changes over time. These latter studies demonstrate dramatic increases in cortical porosity in untreated individuals and a lack of clear efficacy in reversing porosity with treatment (although data are limited). Those papers providing longitudinal assessment, both clinical and pre-clinical, reveal powerful data about cortical porosity and provide a foundation upon which future studies can build.
Collapse
Affiliation(s)
- Matthew R Allen
- Department of Anatomy and Cell Biology, MS 5035, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, 46202, USA.
- Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
| | - Elizabeth A Swallow
- Department of Anatomy and Cell Biology, MS 5035, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, 46202, USA
| | - Corinne E Metzger
- Department of Anatomy and Cell Biology, MS 5035, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, 46202, USA
| |
Collapse
|
13
|
Castro PT, Aranda OL, Marchiori E, Araújo LFBD, Alves HDL, Lopes RT, Werner H, Araujo Júnior E. Proportional vascularization along the fallopian tubes and ovarian fimbria: assessment by confocal microtomography. Radiol Bras 2020; 53:161-166. [PMID: 32587423 PMCID: PMC7302899 DOI: 10.1590/0100-3984.2019.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective To evaluate and reconstruct three-dimensional images of vascularization along the fallopian tube (FT), as well as to determine its relationship with the ovary and ovarian fimbria, and to quantify the blood vessels along the FT according to its anatomical segments, using confocal microtomography (micro-CT). Materials and Methods Nine specimens (six FTs and three FTs with ovaries) were fixed in a solution of 10% formalin for > 24 h at room temperature. Iodine staining was performed by soaking the specimens in 10% Lugol’s solution for 24 h. All specimens were evaluated using micro-CT. A morphometric analysis was performed on the reconstructed images to quantify the vascular distribution along the FT. Results In the FTs evaluated, the density of blood vessels was significantly greater in the fimbrial segments than in the isthmic segments (p < 0.05). The ovarian fimbria was clearly identified, demonstrating the important relationship between these vessels and the FT fimbriae. Conclusion We believe that the vascularization in the fimbriae is greater than and disproportional that in the other segments of FT, and that the ovarian fimbria plays an important role in the development of that difference.
Collapse
Affiliation(s)
- Pedro Teixeira Castro
- Universidade Federal do Rio de Janeiro (UFRJ), Brazil; Clínica Diagnóstico por Imagem (CDPI), Brazil
| | - Osvaldo Luiz Aranda
- Universidade Federal do Rio de Janeiro (UFRJ), Brazil; Universidade de Vassouras, Brazil
| | | | | | - Haimon Diniz Lopes Alves
- Universidade Federal do Rio de Janeiro (UFRJ), Brazil; Universidade do Estado do Rio de Janeiro (UERJ), Brazil
| | | | | | | |
Collapse
|
14
|
Haffner D, Leifheit-Nestler M. Treatment of hyperphosphatemia: the dangers of aiming for normal PTH levels. Pediatr Nephrol 2020; 35:485-491. [PMID: 31823044 DOI: 10.1007/s00467-019-04399-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022]
Abstract
Secondary hyperparathyroidism is part of the complex of chronic kidney disease-associated mineral and bone disorders (CKD-MBD) and is linked with high bone turnover, ectopic calcification, and increased cardiovascular mortality. Therefore, measures for CKD-MBD aim at lowering PTH levels, but there is no general consensus on optimal PTH target values. This manuscript is part of a pros and cons debate for keeping PTH levels within the normal range in children with CKD, focusing on the cons. We conclude that a modest increase in PTH most likely represents an appropriate adaptive response to declining kidney function in patients with CKD stages 2-5D, due to phosphaturic effects and increasing bone resistance. There is no evidence for strictly keeping PTH levels within the normal range in CKD patients with respect to bone health and cardiovascular outcome. In addition, the potentially adverse effects of PTH-lowering measures, such as active vitamin D and calcimimetics, must be taken into account. We suggest that PTH values of 1-2 times the upper normal limit (ULN) may be acceptable in children with CKD stage 2-3, and that PTH levels of 1.7-5 times UNL may be optimal in patients with CKD stage 4-5D. However, standard care of CKD-MBD in children relies on a combination of different measures in which the observation of PTH levels is only a small part of, and trends in PTH levels rather than absolute target values should determine treatment decisions in patients with CKD as recommended by the 2017 KDIGO guidelines.
Collapse
Affiliation(s)
- Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
15
|
Lalayiannis A, Crabtree N, Fewtrell M, Biassoni L, Milford D, Ferro C, Shroff R. Assessing bone mineralisation in children with chronic kidney disease: what clinical and research tools are available? Pediatr Nephrol 2020; 35:937-957. [PMID: 31240395 PMCID: PMC7184042 DOI: 10.1007/s00467-019-04271-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/19/2019] [Accepted: 04/26/2019] [Indexed: 12/11/2022]
Abstract
Mineral and bone disorder in chronic kidney disease (CKD-MBD) is a triad of biochemical imbalances of calcium, phosphate, parathyroid hormone and vitamin D, bone abnormalities and soft tissue calcification. Maintaining optimal bone health in children with CKD is important to prevent long-term complications, such as fractures, to optimise growth and possibly also to prevent extra-osseous calcification, especially vascular calcification. In this review, we discuss normal bone mineralisation, the pathophysiology of dysregulated homeostasis leading to mineralisation defects in CKD and its clinical consequences. Bone mineralisation is best assessed on bone histology and histomorphometry, but given the rarity with which this is performed, we present an overview of the tools available to clinicians to assess bone mineral density, including serum biomarkers and imaging such as dual-energy X-ray absorptiometry and peripheral quantitative computed tomography. We discuss key studies that have used these techniques, their advantages and disadvantages in childhood CKD and their relationship to biomarkers and bone histomorphometry. Finally, we present recommendations from relevant guidelines-Kidney Disease Improving Global Outcomes and the International Society of Clinical Densitometry-on the use of imaging, biomarkers and bone biopsy in assessing bone mineral density. Given low-level evidence from most paediatric studies, bone imaging and histology remain largely research tools, and current clinical management is guided by serum calcium, phosphate, PTH, vitamin D and alkaline phosphatase levels only.
Collapse
Affiliation(s)
- A.D. Lalayiannis
- Nephrology Department Great Ormond St. Hospital for Children NHS Foundation Trust and University College London Institute of Child Health, London, UK
| | - N.J. Crabtree
- Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - M. Fewtrell
- Nephrology Department Great Ormond St. Hospital for Children NHS Foundation Trust and University College London Institute of Child Health, London, UK
| | - L. Biassoni
- Nephrology Department Great Ormond St. Hospital for Children NHS Foundation Trust and University College London Institute of Child Health, London, UK
| | - D.V. Milford
- Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - C.J. Ferro
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - R. Shroff
- Nephrology Department Great Ormond St. Hospital for Children NHS Foundation Trust and University College London Institute of Child Health, London, UK
| |
Collapse
|
16
|
Zhu WQ, Yu YJ, Xu LN, Ming PP, Shao SY, Qiu J. Regulation of osteoblast behaviors via cross-talk between Hippo/YAP and MAPK signaling pathway under fluoride exposure. J Mol Med (Berl) 2019; 97:1003-1017. [PMID: 31055605 DOI: 10.1007/s00109-019-01785-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
Titanium is widely used in implant materials, while excessive fluoride may have negative effects on the osseointegration between the titanium and osteoblasts. Although the underlying mechanisms are still not clear, the mitogen-activated protein kinase (MAPK) or Yes-associated protein (YAP) signaling pathways are thought to be involved. This study evaluated the role of Hippo/YAP and MAPK signaling pathway in osteoblast behaviors under excessive fluoride exposure in vitro and in vivo. Commercially pure Ti (cp-Ti) samples were exposed to fluoride (0, 0.1, and 1.0 mM NaF) for 7 days. Cell adhesion was observed using a laser scanning confocal microscope. Cell viability and apoptosis were evaluated by CCK-8 assay and flow cytometry, respectively. The expressions of osteoblast markers and key molecules in MAPK and YAP pathway were detected by Western blot. In vivo studies were evaluated by histology methods in C57/BL6 mice model. Our results showed that 1.0 mM NaF destroyed the passivation film on cp-Ti surface, which further inhibited the osteoblast adhesion and spreading. Meanwhile, compared to other groups, 1.0 mM NaF led to a remarkable reduction in cell viability (P < 0.05), as well as increased apoptosis (P < 0.05) and downregulation of osteogenesis protein expression (P < 0.05). MAPK and YAP signaling pathways were also activated under 1.0 mM NaF exposure, and JNK seemed to regulate YAP phosphorylation in response to NaF impacts on osteoblasts. In vivo fluorosis mouse model further indicated that 100 ppm NaF group (high fluoride group) increased bone resorption and inhibited the nuclear translocation of YAP. The osteoblast behaviors were negatively altered under excessive fluoride, and MAPK/JNK axis contributed to YAP signaling activation in regulating NaF-induced osteoblast behaviors. KEY MESSAGES: • Excessive fluoride inhibited osteoblast behaviors and bone formation. • YAP and MAPK signaling pathways were activated in osteoblasts under fluoride exposure. • Fluoride regulated osteoblast behaviors via the cross-talk between YAP and MAPK.
Collapse
Affiliation(s)
- Wen-Qing Zhu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ying-Juan Yu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Li-Na Xu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Pan-Pan Ming
- Department of Stomatology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Shui-Yi Shao
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, People's Republic of China.
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
17
|
Lindahl K, Åström E, Dragomir A, Symoens S, Coucke P, Larsson S, Paschalis E, Roschger P, Gamsjaeger S, Klaushofer K, Fratzl-Zelman N, Kindmark A. Homozygosity for CREB3L1 premature stop codon in first case of recessive osteogenesis imperfecta associated with OASIS-deficiency to survive infancy. Bone 2018; 114:268-277. [PMID: 29936144 DOI: 10.1016/j.bone.2018.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Mutations of the endoplasmic reticulum (ER)-stress transducer OASIS (encoded by CREB3L1), cause severe recessive osteogenesis imperfecta (OI) not compatible with surviving the neonatal period, as has been shown in two unrelated families through a whole gene deletion vs. a qualitative alteration of OASIS. Heterozygous carriers in the described families have exhibited a mild phenotype. OASIS is a transcription factor highly expressed in osteoblasts, and OASIS-/- mice exhibit severe osteopenia and spontaneous fractures. Here, we expand the clinical spectrum by a detailed phenotypic characterization of the first case of OASIS-associated OI surviving the neonatal period, with heterozygous family members being unaffected. METHODS All OI-associated genes were sequenced. Primary human osteoblast-like cell (hOB) and fibroblast (FB) cultures were obtained for qPCR, and steady-state collagen biochemistry. FB, hOB and skin biopsies were ultrastructurally analyzed. Bone was analyzed by μCT, histomorphometry, quantitative backscattered electron imaging (qBEI), and Raman microspectroscopy. RESULTS The proband, a boy with severe OI, had blue sclera and tooth agenesis. A homozygous CREB3L1 stop codon mutation was detected by sequencing, while several family members were heterozygotes. Markedly low levels of CREB3L1 mRNA were confirmed by qPCR in hOBs (16%) and FB (21%); however, collagen I levels were only reduced in hOBs (5-10%). Electron microscopy of hOBs showed pronounced alterations, with numerous myelin figures and diminished RER vs. normal ultrastructure of FB. Bone histomorphometry and qBEI were similar to collagen I OI, with low trabecular thickness and mineral apposition rate, and increased bone matrix mineralization. Raman microspectroscopy revealed low level of glycosaminoglycans. Clinical response to life-long bisphosphonate treatment was as expected in severe OI with steadily increasing bone mineral density, but despite this the boy suffered repeated childhood fractures. CONCLUSIONS Deficiency of OASIS can cause severe OI compatible with surviving the neonatal period. A marked decrease of collagen type I transcription was noted in bone tissue, but not in skin, and ultrastructure of hOBs was pathological. Results also suggested OASIS involvement in glycosaminoglycan secretion in bone.
Collapse
Affiliation(s)
- Katarina Lindahl
- Dept. of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden.
| | - Eva Åström
- Department of Woman and Child Health, Karolinska Institutet and Pediatric Neurology, Astrid Lindgren Children's Hospital at Karolinska University Hospital, Stockholm, Sweden
| | - Anca Dragomir
- Dept. of Surgical Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Sofie Symoens
- Dept. of Medical Genetics, The University Hospital in Ghent, Ghent, Belgium
| | - Paul Coucke
- Dept. of Medical Genetics, The University Hospital in Ghent, Ghent, Belgium
| | - Sune Larsson
- Dept. of Surgical Sciences, Uppsala University Hospital, Uppsala, Sweden
| | - Eleftherios Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Andreas Kindmark
- Dept. of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
18
|
Hutchinson JC, Shelmerdine SC, Simcock IC, Sebire NJ, Arthurs OJ. Early clinical applications for imaging at microscopic detail: microfocus computed tomography (micro-CT). Br J Radiol 2017; 90:20170113. [PMID: 28368658 DOI: 10.1259/bjr.20170113] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Microfocus CT (micro-CT) has traditionally been used in industry and preclinical studies, although it may find new applicability in the routine clinical setting. It can provide high-resolution three-dimensional digital imaging data sets to the same level of detail as microscopic examination without the need for tissue dissection. Micro-CT is already enabling non-invasive detailed internal assessment of various tissue specimens, particularly in breast imaging and early gestational fetal autopsy, not previously possible from more conventional modalities such as MRI or CT. In this review, we discuss the technical aspects behind micro-CT image acquisition, how early work with small animal studies have informed our knowledge of human disease and the imaging performed so far on human tissue specimens. We conclude with potential future clinical applications of this novel and emerging technique.
Collapse
Affiliation(s)
- J Ciaran Hutchinson
- 1 Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,2 UCL Great Ormond Street Institute of Child Health, London, UK
| | - Susan C Shelmerdine
- 2 UCL Great Ormond Street Institute of Child Health, London, UK.,3 Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ian C Simcock
- 2 UCL Great Ormond Street Institute of Child Health, London, UK.,3 Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Neil J Sebire
- 1 Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,2 UCL Great Ormond Street Institute of Child Health, London, UK
| | - Owen J Arthurs
- 2 UCL Great Ormond Street Institute of Child Health, London, UK.,3 Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
19
|
Marques IDB, Araújo MJCLN, Graciolli FG, Reis LMD, Pereira RM, Custódio MR, Jorgetti V, Elias RM, David-Neto E, Moysés RMA. Biopsy vs. peripheral computed tomography to assess bone disease in CKD patients on dialysis: differences and similarities. Osteoporos Int 2017; 28:1675-1683. [PMID: 28204954 DOI: 10.1007/s00198-017-3956-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/31/2017] [Indexed: 01/24/2023]
Abstract
UNLABELLED Results from bone biopsy and high-resolution peripheral quantitative computed tomography (HR-pQCT) were compared in 31 CKD patients. There was an agreement mainly for cortical compartment that may represent a perspective on the fracture risk assessment. HR-pQCT also provided some clues on the turnover status, which warrants further studies. INTRODUCTION Chronic kidney disease (CKD) patients are at high risk of bone disease. Although bone biopsy is considered the best method to evaluate bone disease, it is expensive and not always available. Here we have compared, for the first time, data obtained from bone biopsy and HR-pQCT in a sample of CKD patients on dialysis. METHODS HR-pQCT and dual-energy X-ray absorptiometry (DXA) were performed in 31 CKD patients (30 on dialysis). Biopsies were analyzed by quantitative histomorphometry, and classified according to TMV. RESULTS We have found an inverse correlation between radius cortical density measured by HR-pQCT, with serum, as well as histomorphometric bone remodeling markers. Trabecular density and BV/TV measured through HR-pQCT in the distal radius correlated with trabecular and mineralized trabecular bone volume. Trabecular number, separation, and thickness obtained from HR-pQCT and from bone biopsy correlated with each other. Patients with cortical porosity on bone histomorphometry presented lower cortical density at the distal radius. Cortical density at radius was higher while bone alkaline phosphatase was lower in patients with low turnover. Combined, these parameters could identify the turnover status better than individually. CONCLUSIONS There was an agreement between HR-pQCT and bone biopsy parameters, particularly in cortical compartment, which may point to a new perspective on the fracture risk assessment for CKD patients. Besides classical bone resorption markers, HR-pQCT provided some clues on the turnover status by measurements of cortical density at radius, although the significance of this finding warrants further studies.
Collapse
Affiliation(s)
- I D B Marques
- Renal Transplant Service, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - M J C L N Araújo
- Renal Transplant Service, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
- Nephrology Division, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - F G Graciolli
- Nephrology Division, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - L M Dos Reis
- Nephrology Division, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - R M Pereira
- Rheumatology Division, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - M R Custódio
- Renal Transplant Service, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
- Nephrology Division, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - V Jorgetti
- Nephrology Division, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - R M Elias
- Nephrology Division, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - E David-Neto
- Renal Transplant Service, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - R M A Moysés
- Nephrology Division, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil.
- Universidade Nove de Julho (UNINOVE), Rua Iperoig, 690 ap 121, São Paulo, SP, 05016-000, Brazil.
| |
Collapse
|
20
|
Joseph S, McCarrison S, Wong SC. Skeletal Fragility in Children with Chronic Disease. Horm Res Paediatr 2017; 86:71-82. [PMID: 27428665 DOI: 10.1159/000447583] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/13/2016] [Indexed: 11/19/2022] Open
Abstract
Skeletal fragility associated with underlying childhood chronic disease is a systemic disorder of poor bone growth and reduction in bone turnover which can lead to abnormal bone mass, geometry and microarchitecture. Due to the growth potential unique to children, remarkable bone recovery following a transient threat to the bone can occur if there is concurrent growth. Addressing bone health in these children should focus on improvement in growth, puberty and removing the primary insult. In conditions where there is a little scope for bone recovery and limited residual growth, bone-targeted therapy may need to be considered, even though there is currently limited evidence. The importance of early detection of signs of bone fragility, by active screening for vertebral fracture using newer imaging techniques such as dual-energy X-ray absorptiometry lateral vertebral morphometry, may now be possible. There is currently, a paucity of evidence to support prophylactic use of anti-resorptive therapy. Where poor growth and low bone turnover are seen, the use of growth-promoting therapies and anabolic bone-protective agents may be more physiological and should be evaluated in well-designed trials. Collaborative studies on long-term fracture outcome and well-designed trials of bone-protective therapies are needed and to be encouraged.
Collapse
Affiliation(s)
- S Joseph
- Developmental Endocrinology Research Group, University of Glasgow, Royal Hospital for Children, Glasgow, UK
| | | | | |
Collapse
|