1
|
Gluhovschi C, Gadalean F, Velciov S, Nistor M, Petrica L. Three Diseases Mediated by Different Immunopathologic Mechanisms-ANCA-Associated Vasculitis, Anti-Glomerular Basement Membrane Disease, and Immune Complex-Mediated Glomerulonephritis-A Common Clinical and Histopathologic Picture: Rapidly Progressive Crescentic Glomerulonephritis. Biomedicines 2023; 11:2978. [PMID: 38001978 PMCID: PMC10669599 DOI: 10.3390/biomedicines11112978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Immune mechanisms play an important role in the pathogenesis of glomerulonephritis (GN), with autoimmunity being the main underlying pathogenetic process of both primary and secondary GN. We present three autoimmune diseases mediated by different autoimmune mechanisms: glomerulonephritis in vasculitis mediated by anti-neutrophil cytoplasmic antibodies (ANCAs), glomerulonephritis mediated by anti-glomerular basement membrane antibodies (anti-GBM antibodies), and immune complex-mediated glomerulonephritis. Some of these diseases represent a common clinical and histopathologic scenario, namely rapidly progressive crescentic glomerulonephritis. This is a severe illness requiring complex therapy, with the main role being played by therapy aimed at targeting immune mechanisms. In the absence of immune therapy, the crescents, the characteristic histopathologic lesions of this common presentation, progress toward fibrosis, which is accompanied by end-stage renal disease (ESRD). The fact that three diseases mediated by different immunopathologic mechanisms have a common clinical and histopathologic picture reveals the complexity of the relationship between immunopathologic mechanisms and their clinical expression. Whereas most glomerular diseases progress by a slow process of sclerosis and fibrosis, the glomerular diseases accompanied by glomerular crescent formation can progress, if untreated, in a couple of months into whole-nephron glomerulosclerosis and fibrosis. The outcome of different immune processes in a common clinical and histopathologic phenotype reveals the complexity of the relationship of the kidney with the immune system. The aim of this review is to present different immune processes that lead to a common clinical and histopathologic phenotype, such as rapidly progressive crescentic glomerulonephritis.
Collapse
Affiliation(s)
- Cristina Gluhovschi
- Division of Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (F.G.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
| | - Florica Gadalean
- Division of Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (F.G.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Division of Nephrology, County Emergency Hospital Timisoara, 300041 Timișoara, Romania
| | - Silvia Velciov
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Division of Nephrology, County Emergency Hospital Timisoara, 300041 Timișoara, Romania
| | - Mirabela Nistor
- Division of Nephrology, County Emergency Hospital Timisoara, 300041 Timișoara, Romania
| | - Ligia Petrica
- Division of Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (F.G.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Division of Nephrology, County Emergency Hospital Timisoara, 300041 Timișoara, Romania
| |
Collapse
|
2
|
Prendecki M, Gulati K, Pisacano N, Pinheiro D, Bhatt T, Mawhin MA, Toulza F, Masuda ES, Cowburn A, Lodge KM, Tam FWK, Roufosse C, Pusey CD, McAdoo SP. Syk Activation in Circulating and Tissue Innate Immune Cells in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Arthritis Rheumatol 2023; 75:84-97. [PMID: 36428281 PMCID: PMC10099805 DOI: 10.1002/art.42321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/21/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Syk is a cytoplasmic protein tyrosine kinase that plays a role in signaling via B cell and Fc receptors (FcR). FcR engagement and signaling via Syk is thought to be important in antineutrophil cytoplasm antibody (ANCA) IgG-mediated neutrophil activation. This study was undertaken to investigate the role of Syk in ANCA-induced myeloid cell activation and vasculitis pathogenesis. METHODS Phosphorylation of Syk in myeloid cells from healthy controls and ANCA-associated vasculitis (AAV) patients was analyzed using flow cytometry. The effect of Syk inhibition on myeloperoxidase (MPO)-ANCA IgG activation of cells was investigated using functional assays (interleukin-8 and reactive oxygen species production) and targeted gene analysis with NanoString. Total and phosphorylated Syk at sites of tissue inflammation in patients with AAV was assessed using immunohistochemistry and RNAscope in situ hybridization. RESULTS We identified increased phosphorylated Syk at critical activatory tyrosine residues in blood neutrophils and monocytes from patients with active AAV compared to patients with disease in remission or healthy controls. Syk was phosphorylated in vitro following MPO-ANCA IgG stimulation, and Syk inhibition was able to prevent ANCA-mediated cellular responses. Using targeted gene expression analysis, we identified up-regulation of FcR- and Syk-dependent signaling pathways following MPO-ANCA IgG stimulation. Finally, we showed that Syk is expressed and phosphorylated in tissue leukocytes at sites of organ inflammation in AAV. CONCLUSION These findings indicate that Syk plays a critical role in MPO-ANCA IgG-induced myeloid cell responses and that Syk is activated in circulating immune cells and tissue immune cells in AAV; therefore, Syk inhibition may be a potential therapeutic option.
Collapse
Affiliation(s)
- Maria Prendecki
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, Hammersmith Campus, and Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Kavita Gulati
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, Hammersmith Campus, and Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Noelle Pisacano
- National Heart and Lung Institute, Imperial College, London, UK
| | - Damilola Pinheiro
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, Hammersmith Campus, London, UK
| | - Tejal Bhatt
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, Hammersmith Campus, London, UK
| | - Marie-Anne Mawhin
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, Hammersmith Campus, London, UK
| | - Frederic Toulza
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, Hammersmith Campus, London, UK
| | | | - Andrew Cowburn
- National Heart and Lung Institute, Imperial College, London, UK
| | | | - Frederick W K Tam
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, Hammersmith Campus, and Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Candice Roufosse
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, Hammersmith Campus, London, UK
| | - Charles D Pusey
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, Hammersmith Campus, and Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Stephen P McAdoo
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, Hammersmith Campus, and Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| |
Collapse
|
3
|
An XN, Wei ZN, Xie YY, Xu J, Shen Y, Ni LY, Shi H, Shen PY, Zhang W, Chen YX. CD206+CD68+ mono-macrophages and serum soluble CD206 level are increased in antineutrophil cytoplasmic antibodies associated glomerulonephritis. BMC Immunol 2022; 23:55. [PMID: 36376784 PMCID: PMC9664714 DOI: 10.1186/s12865-022-00529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background Antineutrophil Cytoplasmic Antibodies (ANCA) associated glomerulonephritis (AGN) is a group of autoimmune diseases and mono-macrophages are involved in its glomerular injuries. In this study, we aim to investigate the role of CD206+ mono-macrophages in AGN. Methods 27 AGN patients (14 active AGN, 13 remissive AGN) together with healthy controls (n = 9), disease controls (n = 6) and kidney function adjusted controls (n = 9) from Department of Nephrology, Ruijin hospital were recruited. Flow cytometry was used to study proportion of CD206+ cells in peripheral blood. Immunohistochemistry for CD206 staining was performed and CD206 expression was scored in different kidney regions. Serum soluble CD206 (sCD206) was measured by enzyme-linked immunosorbent assay (ELISA). We also generated murine myeloperoxidase (MPO) (muMPO) ANCA by immunizing Mpo−/− mice. Mouse bone marrow-derived macrophages (BMDMs) from wild C57BL/6 mice and peripheral blood mononuclear cell (PBMC) derived macrophages from healthy donors were treated with MPO ANCA with or without its inhibitor AZD5904 to investigate the effects of MPO-ANCA on CD206 expression. Results The proportion of peripheral CD206+CD68+ cells in active AGN patients were significantly higher than that in remissive patients (p < 0.001), healthy controls (p < 0.001) and kidney function adjusted controls (p < 0.001). Serum sCD206 level in active AGN patients was higher than that in healthy controls (p < 0.05) and remissive patients (p < 0.01). Immunohistochemistry showed CD206 was highly expressed in different kidney regions including fibrinoid necrosis or crescent formation, glomeruli, periglomerular and tubulointerstitial compartment in active AGN patients in comparison with disease controls. Further studies showed MPO ANCA could induce CD206 expression in BMDMs and PBMC derived macrophages and such effects could be reversed by its inhibitor AZD5904. Conclusion ANCA could induce CD206 expression on mono-macrophages and CD206+ mono-macrophages are activated in AGN. CD206 might be involved in the pathogenesis of AAV and may be a potential target for the disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00529-w.
Collapse
|
4
|
Graßhoff H, Fourlakis K, Comdühr S, Riemekasten G. Autoantibodies as Biomarker and Therapeutic Target in Systemic Sclerosis. Biomedicines 2022; 10:2150. [PMID: 36140251 PMCID: PMC9496142 DOI: 10.3390/biomedicines10092150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare connective tissue disorder characterized by immune dysregulation evoking the pathophysiological triad of inflammation, fibrosis and vasculopathy. In SSc, several alterations in the B-cell compartment have been described, leading to polyclonal B-cell hyperreactivity, hypergammaglobulinemia and autoantibody production. Autoreactive B cells and autoantibodies promote and maintain pathologic mechanisms. In addition, autoantibodies in SSc are important biomarkers for predicting clinical phenotype and disease progression. Autoreactive B cells and autoantibodies represent potentially promising targets for therapeutic approaches including B-cell-targeting therapies, as well as strategies for unselective and selective removal of autoantibodies. In this review, we present mechanisms of the innate immune system leading to the generation of autoantibodies, alterations of the B-cell compartment in SSc, autoantibodies as biomarkers and autoantibody-mediated pathologies in SSc as well as potential therapeutic approaches to target these.
Collapse
Affiliation(s)
- Hanna Graßhoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, 23538 Lübeck, Germany
| | | | | | | |
Collapse
|
5
|
Hakroush S, Tampe D, Ströbel P, Korsten P, Tampe B. Comparative Histological Subtyping of Immune Cell Infiltrates in MPO-ANCA and PR3-ANCA Glomerulonephritis. Front Immunol 2021; 12:737708. [PMID: 34759920 PMCID: PMC8574160 DOI: 10.3389/fimmu.2021.737708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background Acute kidney injury (AKI) is a common and severe complication of anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV), potentially leading to chronic kidney disease (CKD), end-stage renal disease (ESRD), or death. Pathogenic ANCAs, in particular proteinase 3 (PR3) and myeloperoxidase (MPO), trigger a deleterious immune response with intrarenal immune cell infiltration resulting in a pauci-immune necrotizing and crescentic glomerulonephritis (GN). However, a systematic analysis of intrarenal immune cell subtypes concerning neutrophils, eosinophils, plasma cells, and mononuclear cell infiltrates (macrophages, lymphocytes) in ANCA GN remains elusive. Therefore, we aimed to compare distinct immune cell infiltrates in association with clinicopathological findings in ANCA GN. Methods A total of 53 kidney biopsies with ANCA GN at the University Medical Center Göttingen were retrospectively analyzed. Histological infiltrates of neutrophils, eosinophils, plasma cells, and mononucleated cells (macrophages, lymphocytes) were quantified as a fraction of the total area of inflammation. Results Neutrophilic infiltrates were associated with glomerular necrosis and severe kidney injury in ANCA GN. Among tubulointerstitial lesions, intrarenal neutrophils correlated with interstitial inflammation, tubulitis, and inflammation in areas of interstitial fibrosis/tubular atrophy (IFTA), representing active inflammatory lesions. Concerning eosinophils, infiltrates were associated with severe kidney injury, interstitial inflammation, and cellular casts independent of glomerular lesions, implicating a distinct role in inflammation and damage in ANCA GN. Plasma cell infiltrates correlated with tubulitis and interstitial fibrosis and were associated with renal replacement therapy during the short-term disease course. Finally, mononuclear cell infiltrates correlated with severe kidney injury and active histopathological lesions (glomerular crescents, interstitial inflammation, tubulitis, inflammation, and tubulitis in areas of IFTA) besides chronic lesions (interstitial fibrosis and tubular atrophy) in ANCA GN. Interestingly, intrarenal subtypes of immune cell infiltrates differed in MPO-ANCA versus PR3-ANCA GN and were associated with distinct glomerular and tubulointerstitial lesions, implicating different pathogenic mechanisms of kidney injury in ANCA subtypes. Conclusion Our observations imply distinct pathomechanisms contributing to inflammation and renal injury in MPO vs. PR3-associated ANCA GN and potentially contribute to new therapeutic targets in specific ANCA subtypes.
Collapse
Affiliation(s)
- Samy Hakroush
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Désirée Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Korsten
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Prendecki M, McAdoo SP. New Therapeutic Targets in Antineutrophil Cytoplasm Antibody–Associated Vasculitis. Arthritis Rheumatol 2021; 73:361-370. [DOI: 10.1002/art.41407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
|
7
|
Mendoza CE, Brant EJ, McDermott ML, Froment A, Hu Y, Hogan SL, Jennette JC, Falk RJ, Nachman PH, Derebail VK, Bunch DO. Elevated Microparticle Tissue Factor Activity Differentiates Patients With Venous Thromboembolism in Anti-neutrophil Cytoplasmic Autoantibody Vasculitis. Kidney Int Rep 2019; 4:1617-1629. [PMID: 31891003 PMCID: PMC6933462 DOI: 10.1016/j.ekir.2019.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 06/18/2019] [Accepted: 07/08/2019] [Indexed: 01/12/2023] Open
Abstract
Introduction Venous thromboembolism (VTE) is a life-threatening complication of anti-neutrophil cytoplasmic autoantibody (ANCA) vasculitis whose mechanism remains incompletely elucidated. We tested the hypothesis that elevated microparticle tissue factor activity (MPTFa) or anti-plasminogen antibodies (anti-Plg) may identify patients at risk for VTE. Methods In this prospective study, patients were enrolled during active disease and followed longitudinally. Twelve patients who experienced a VTE (VTEpos) were compared with patients without VTE (VTEneg, n = 29) and healthy controls (HC, n = 70). MPTFa, anti-Plg, interleukin-6, high-sensitivity C-reactive protein (hs-CRP), D-dimer, serum creatinine, and serum albumin were assessed. Fisher’s exact tests and Wilcoxon tests compared categorical and continuous variables, respectively. Cox regression for time to VTE or last follow-up was performed. Results VTEpos patients had higher MPTFa (peak median = 14.0, interquartile range = 4.3–36.6) than HC (0, 0–3.5) and VTEneg patients (0, 0–1.4). In time-to-event analysis, MPTFa was associated with VTE when measured during both active disease (hazard ratio [HR]; 95% confidence interval [CI]: 1.04; 1.01–1.08) and remission (1.4; 1.11–1.77). Anti-Plg during remission was also associated with VTE (1.17; 1.03–1.33). Each g/dl decrease of serum albumin was associated with a 4-fold increase in VTE risk (4.4; 1.5–12.9). Adjusting for estimated glomerular filtration rate (eGFR), anti-Plg during remission remained significantly associated with VTE. Conclusion Elevated MPTFa and increased anti-Plg in remission are strong indicators of VTE independent of renal function. Association of anti-Plg during remission with VTE implies hypercoagulability even during disease quiescence. Hypoalbuminemia strongly portends VTE risk, which is a novel finding in ANCA vasculitis. A thrombotic signature would allow improved management of patients to minimize VTE risk and complications of anticoagulation.
Collapse
Affiliation(s)
- Carmen E Mendoza
- Department of Medicine, Division of Nephrology, UNC Kidney Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Elizabeth J Brant
- Department of Medicine, Division of Nephrology, UNC Kidney Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew L McDermott
- Department of Medicine, Division of Nephrology, UNC Kidney Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Anne Froment
- Department of Medicine, Division of Nephrology, UNC Kidney Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yichun Hu
- Department of Medicine, Division of Nephrology, UNC Kidney Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Susan L Hogan
- Department of Medicine, Division of Nephrology, UNC Kidney Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - J Charles Jennette
- Department of Medicine, Division of Nephrology, UNC Kidney Center, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ronald J Falk
- Department of Medicine, Division of Nephrology, UNC Kidney Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Patrick H Nachman
- Department of Medicine, Division of Nephrology, UNC Kidney Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Vimal K Derebail
- Department of Medicine, Division of Nephrology, UNC Kidney Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Donna O'Dell Bunch
- Department of Medicine, Division of Nephrology, UNC Kidney Center, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
Alba MA, Jennette JC, Falk RJ. Pathogenesis of ANCA-Associated Pulmonary Vasculitis. Semin Respir Crit Care Med 2018; 39:413-424. [PMID: 30404109 DOI: 10.1055/s-0038-1673386] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antineutrophil cytoplasmic antibodies (ANCAs) are autoantibodies specific for antigens located in the cytoplasmic granules of neutrophils and lysosomes of monocytes. ANCAs are associated with a spectrum of necrotizing vasculitis that includes granulomatosis with polyangiitis, microscopic polyangiitis, and eosinophilic granulomatosis with polyangiitis. Pulmonary vasculitis and related extravascular inflammation and fibrosis are frequent components of ANCA vasculitis. In this review, we detail the factors that have been associated with the origin of the ANCA autoimmune response and summarize the most relevant clinical observations, in vitro evidence, and animal studies strongly indicating the pathogenic potential of ANCA. In addition, we describe the putative sequence of pathogenic mechanisms driven by ANCA-induced activation of neutrophils that result in small vessel necrotizing vasculitis and extravascular granulomatous necrotizing inflammation.
Collapse
Affiliation(s)
- Marco A Alba
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - J Charles Jennette
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ronald J Falk
- University of North Carolina Kidney Center, Chapel Hill, North Carolina.,UNC Kidney Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
9
|
Prendecki M, Pusey CD. Recent advances in understanding of the pathogenesis of ANCA-associated vasculitis. F1000Res 2018; 7:F1000 Faculty Rev-1113. [PMID: 30079228 PMCID: PMC6053698 DOI: 10.12688/f1000research.14626.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2018] [Indexed: 12/24/2022] Open
Abstract
Anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitides (AAV) are rare systemic autoimmune diseases characterised by inflammation of small blood vessels. Recent developments have been made in our understanding of the pathogenesis of these diseases, including the pathogenic role of ANCA, neutrophils and monocytes as mediators of injury, dysregulation of the complement system, and the role of T and B cells. Current treatment strategies for AAV are based on broad immunosuppression, which may have significant side effects. Advances in understanding of the pathogenesis of disease have led to the identification of new therapeutic targets which may lead to treatment protocols with less-toxic side effects. The aim of this review is to summarise current information and recent advances in understanding of the pathogenesis of AAV.
Collapse
Affiliation(s)
- Maria Prendecki
- Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Charles D. Pusey
- Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
10
|
Brunini F, Page TH, Gallieni M, Pusey CD. The role of monocytes in ANCA-associated vasculitides. Autoimmun Rev 2016; 15:1046-1053. [PMID: 27491570 DOI: 10.1016/j.autrev.2016.07.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 07/12/2016] [Indexed: 12/13/2022]
Abstract
The anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitides (AAV) are a heterogeneous group of diseases causing inflammation in small blood vessels and linked by the presence of circulating ANCA specific for proteinase 3 (PR3) or myeloperoxidase (MPO). These antigens are present both in the cytoplasmic granules and on the surface of neutrophils, and the effect of ANCA on neutrophil biology has been extensively studied. In contrast, less attention has been paid to the role of monocytes in AAV. These cells contain PR3 and MPO in lysosomes and can also express them at the cell surface. Monocytes respond to ANCA by producing pro-inflammatory and chemotactic cytokines, reactive-oxygen-species and by up-regulating CD14. Moreover, soluble and cell surface markers of monocyte activation are raised in AAV patients, suggesting an activated phenotype that may persist even during disease remission. The presence of monocyte-derived macrophages and giant cells within damaged renal and vascular tissue in AAV also attests to their role in pathogenesis. In particular, their presence in the tertiary lymphoid organ-like granulomas of AAV patients may generate an environment predisposed to maintaining autoimmunity. Here we discuss the evidence for a pathogenic role of monocytes in AAV, their role in granuloma formation and tissue damage, and their potential to both direct and maintain autoimmunity. ANCA-activation of monocytes may therefore provide an explanation for the relapsing-remitting course of disease and its links with infections. Monocytes may thus represent a promising target for the treatment of this group of life-threatening diseases.
Collapse
Affiliation(s)
- Francesca Brunini
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK; Nephrology and Dialysis Unit, San Carlo Borromeo Hospital, ASST Santi Paolo e Carlo, University of Milano, Milan, Italy; Specialty School of Nephrology, University of Milan, Milan, Italy
| | - Theresa H Page
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Maurizio Gallieni
- Nephrology and Dialysis Unit, San Carlo Borromeo Hospital, ASST Santi Paolo e Carlo, University of Milano, Milan, Italy
| | - Charles D Pusey
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
11
|
Xiao H, Hu P, Falk RJ, Jennette JC. Overview of the Pathogenesis of ANCA-Associated Vasculitis. KIDNEY DISEASES 2015; 1:205-15. [PMID: 27536680 DOI: 10.1159/000442323] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/02/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Antineutrophil cytoplasmic autoantibodies (ANCA) are associated with a spectrum of necrotizing vasculitis including granulomatosis with polyangiitis, microscopic polyangiitis, eosinophilic granulomatosis with polyangiitis, and renal-limited necrotizing and crescentic glomerulonephritis. Clinical observations and in vitro and in vivo experimental evidence strongly indicate that ANCA are pathogenic. SUMMARY The etiology and pathogenesis of ANCA-associated vasculitis (AAV) are multifactorial, with contributions from genetic factors, environmental exposures, infections, characteristics of the innate and adaptive immune system, and the intensity and duration of the injury. Acute vascular inflammation is induced when resting neutrophils that have ANCA autoantigens sequestered in cytoplasmic granules are exposed to priming factors - for example, cytokines induced by infection or phlogogenic factors released by complement activation - that cause the release of ANCA antigens on the surface of neutrophils and in the microenvironment around the neutrophils. ANCA bind to these ANCA antigens, which activates neutrophils by Fcγ receptor engagement and F(ab')2 binding at the neutrophil cell surface. ANCA-activated neutrophils release factors that activate the alternative complement pathway, which generates C5a, a chemoattractant for neutrophils; C5a also primes the arriving neutrophils for activation by ANCA. Activated neutrophils adhere to and penetrate vessel walls, and they release toxic oxygen radicals and destructive enzymes that cause apoptosis and necrosis of the neutrophils as well as of the adjacent vessel wall cells and matrix. KEY MESSAGES Patients with active AAV have ongoing asynchronous onsets of countless acute lesions, with each lesion evolving through stereotypical phases within 1 or 2 weeks. Induction of remission results in termination of new waves of acute lesions and allows all lesions to progress to scarring or resolution.
Collapse
Affiliation(s)
- Hong Xiao
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, N.C., USA
| | - Peiqi Hu
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, N.C., USA
| | - Ronald J Falk
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, N.C., USA
| | - J Charles Jennette
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, N.C., USA
| |
Collapse
|