1
|
Meyer C, Wrobel S, Raimondo S, Rochkind S, Heimann C, Shahar A, Ziv-Polat O, Geuna S, Grothe C, Haastert-Talini K. Peripheral Nerve Regeneration through Hydrogel-Enriched Chitosan Conduits Containing Engineered Schwann Cells for Drug Delivery. Cell Transplant 2016; 25:159-82. [DOI: 10.3727/096368915x688010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Critical length nerve defects in the rat sciatic nerve model were reconstructed with chitosan nerve guides filled with Schwann cells (SCs) containing hydrogel. The transplanted SCs were naive or had been genetically modified to overexpress neurotrophic factors, thus providing a cellular neurotrophic factor delivery system. Prior to the assessment in vivo, in vitro studies evaluating the properties of engineered SCs overexpressing glial cell line-derived neurotrophic factor (GDNF) or fibroblast growth factor 2 (FGF-218kDa) demonstrated their neurite outgrowth inductive bioactivity for sympathetic PC-12 cells as well as for dissociated dorsal root ganglion cell drop cultures. SCs within NVR-hydrogel, which is mainly composed of hyaluronic acid and laminin, were delivered into the lumen of chitosan hollow conduits with a 5% degree of acetylation. The viability and neurotrophic factor production by engineered SCs within NVR-Gel inside the chitosan nerve guides was further demonstrated in vitro. In vivo we studied the outcome of peripheral nerve regeneration after reconstruction of 15-mm nerve gaps with either chitosan/NVR-Gel/SCs composite nerve guides or autologous nerve grafts (ANGs). While ANGs did guarantee for functional sensory and motor regeneration in 100% of the animals, delivery of NVR-Gel into the chitosan nerve guides obviously impaired sufficient axonal outgrowth. This obstacle was overcome to a remarkable extent when the NVR-Gel was enriched with FGF-218kDa overexpressing SCs.
Collapse
Affiliation(s)
- Cora Meyer
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Lower-Saxony, Germany
- Center for Systems Neuroscience (ZSN) Hannover, Lower-Saxony, Germany
| | - Sandra Wrobel
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Lower-Saxony, Germany
- Center for Systems Neuroscience (ZSN) Hannover, Lower-Saxony, Germany
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, Università degli studi di Torino, Orbassano, Piemonte, Italy
| | - Shimon Rochkind
- Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | - Stefano Geuna
- Department of Clinical and Biological Sciences, Università degli studi di Torino, Orbassano, Piemonte, Italy
| | - Claudia Grothe
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Lower-Saxony, Germany
- Center for Systems Neuroscience (ZSN) Hannover, Lower-Saxony, Germany
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Lower-Saxony, Germany
- Center for Systems Neuroscience (ZSN) Hannover, Lower-Saxony, Germany
| |
Collapse
|
2
|
Rohrbeck A, Stahl F, Höltje M, Hettwer T, Lindner P, Hagemann S, Pich A, Haastert-Talini K. C3-induced release of neurotrophic factors from Schwann cells - potential mechanism behind its regeneration promoting activity. Neurochem Int 2015; 90:232-45. [PMID: 26417907 DOI: 10.1016/j.neuint.2015.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/11/2015] [Accepted: 09/23/2015] [Indexed: 01/10/2023]
Abstract
Previous studies revealed a peripheral nerve regeneration (PNR)(1) promoting activity of Clostridium botulinum C3(2) exoenzyme or a 26(mer) C-terminal peptide fragment covering amino acids 156-181 (C3(156-181)),(3) when delivered as one-time injection at the lesion site. The current study was performed to 1) investigate if prolonged availability of C3 and C3(156-181) at the lesion site can further enhance PNR in vivo and to 2) elucidate effects of C3 and C3(156-181) on Schwann cells (SCs)(4)in vitro. For in vivo studies, 10 mm adult rat sciatic nerve gaps were reconstructed with the epineurial pouch technique or autologous nerve grafts. Epineurial pouches were filled with a hydrogel containing i) vehicle, ii) 40 μM C3 or iii) 40 μM C3(156-181). Sensory and motor functional recovery was monitored over 12 weeks and the outcome of PNR further analyzed by nerve morphometry. In vitro, we compared gene expression profiles (microarray analysis) and neurotrophic factor expression (western blot analysis) of untreated rat neonatal SCs with those treated with C3 or C3(156-181) for 72 h. Effects on neurotrophic factor expression levels were proven in adult human SCs. Unexpectedly, prolonged delivery of C3 and C3(156-181) at the lesion site did not increase the outcome of PNR. Regarding the potential mechanism underlying their previously detected PNR promoting action, however, 6 genes were found to be commonly altered in SCs upon treatment with C3 or C3(156-181). We demonstrate significant down-regulation of genes involved in glutamate uptake (Eaac1,(5)Grin2a(6)) and changes in neurotrophic factor expression (increase of FGF-2(7) and decrease of NGF(8)). Our microarray-based expression profiling revealed novel C3-regulated genes in SCs possibly involved in the axonotrophic (regeneration promoting) effects of C3 and C3(156-181). Detection of altered neurotrophic factor expression by C3 or C3(156-181) treated primary neonatal rat SCs and primary adult human SCs supports this hypothesis.
Collapse
Affiliation(s)
- Astrid Rohrbeck
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Frank Stahl
- Institute for Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, D-30167 Hannover, Germany
| | - Markus Höltje
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Timo Hettwer
- Institute of Neuroanatomy, Hannover Medical School and Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Patrick Lindner
- Institute for Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, D-30167 Hannover, Germany
| | - Sandra Hagemann
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy, Hannover Medical School and Carl-Neuberg-Str. 1, D-30625 Hannover, Germany; Center for Systems Neuroscience (ZSN), Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| |
Collapse
|