1
|
Falvo D'Urso Labate G, De Schryver T, Baino F, Debbaut C, Fragomeni G, Vitale-Brovarone C, Van Hoorebeke L, Segers P, Boone M, Catapano G. Towards the biomimetic design of hollow fiber membrane bioreactors for bioartificial organs and tissue engineering: A micro-computed tomography (μCT) approach. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
2
|
Liver Bioreactor Design Issues of Fluid Flow and Zonation, Fibrosis, and Mechanics: A Computational Perspective. J Funct Biomater 2020; 11:jfb11010013. [PMID: 32121053 PMCID: PMC7151609 DOI: 10.3390/jfb11010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/27/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering, with the goal of repairing or replacing damaged tissue and organs, has continued to make dramatic science-based advances since its origins in the late 1980’s and early 1990’s. Such advances are always multi-disciplinary in nature, from basic biology and chemistry through physics and mathematics to various engineering and computer fields. This review will focus its attention on two topics critical for tissue engineering liver development: (a) fluid flow, zonation, and drug screening, and (b) biomechanics, tissue stiffness, and fibrosis, all within the context of 3D structures. First, a general overview of various bioreactor designs developed to investigate fluid transport and tissue biomechanics is given. This includes a mention of computational fluid dynamic methods used to optimize and validate these designs. Thereafter, the perspective provided by computer simulations of flow, reactive transport, and biomechanics responses at the scale of the liver lobule and liver tissue is outlined, in addition to how bioreactor-measured properties can be utilized in these models. Here, the fundamental issues of tortuosity and upscaling are highlighted, as well as the role of disease and fibrosis in these issues. Some idealized simulations of the effects of fibrosis on lobule drug transport and mechanics responses are provided to further illustrate these concepts. This review concludes with an outline of some practical applications of tissue engineering advances and how efficient computational upscaling techniques, such as dual continuum modeling, might be used to quantify the transition of bioreactor results to the full liver scale.
Collapse
|
3
|
Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6040146. [PMID: 27403430 PMCID: PMC4925947 DOI: 10.1155/2016/6040146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/25/2016] [Indexed: 11/17/2022]
Abstract
Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications.
Collapse
|
4
|
Abstract
Interest in "engineering liver" arises from multiple communities: therapeutic replacement; mechanistic models of human processes; and drug safety and efficacy studies. An explosion of micro- and nanofabrication, biomaterials, microfluidic, and other technologies potentially affords unprecedented opportunity to create microphysiological models of the human liver, but engineering design principles for how to deploy these tools effectively toward specific applications, including how to define the essential constraints of any given application (available sources of cells, acceptable cost, and user-friendliness), are still emerging. Arguably less appreciated is the parallel growth in computational systems biology approaches toward these same problems-particularly in parsing complex disease processes from clinical material, building models of response networks, and in how to interpret the growing compendium of data on drug efficacy and toxicology in patient populations. Here, we provide insight into how the complementary paths of engineering liver-experimental and computational-are beginning to interplay toward greater illumination of human disease states and technologies for drug development.
Collapse
Affiliation(s)
- Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | | | | |
Collapse
|
5
|
Ebrahimkhani MR, Neiman JAS, Raredon MSB, Hughes DJ, Griffith LG. Bioreactor technologies to support liver function in vitro. Adv Drug Deliv Rev 2014; 69-70:132-57. [PMID: 24607703 PMCID: PMC4144187 DOI: 10.1016/j.addr.2014.02.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/18/2014] [Accepted: 02/24/2014] [Indexed: 02/08/2023]
Abstract
Liver is a central nexus integrating metabolic and immunologic homeostasis in the human body, and the direct or indirect target of most molecular therapeutics. A wide spectrum of therapeutic and technological needs drives efforts to capture liver physiology and pathophysiology in vitro, ranging from prediction of metabolism and toxicity of small molecule drugs, to understanding off-target effects of proteins, nucleic acid therapies, and targeted therapeutics, to serving as disease models for drug development. Here we provide perspective on the evolving landscape of bioreactor-based models to meet old and new challenges in drug discovery and development, emphasizing design challenges in maintaining long-term liver-specific function and how emerging technologies in biomaterials and microdevices are providing new experimental models.
Collapse
Affiliation(s)
- Mohammad R Ebrahimkhani
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jaclyn A Shepard Neiman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Micha Sam B Raredon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
6
|
Zhang FY, Tang NH, Wang XQ, Li XJ, Chen YL. Simultaneous recovery of dual pathways for ammonia metabolism do not improve further detoxification of ammonia in HepG2 cells. Hepatobiliary Pancreat Dis Int 2013; 12:525-32. [PMID: 24103284 DOI: 10.1016/s1499-3872(13)60083-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Key enzyme deficiency in the dual-pathway of ammonia metabolism leads to low detoxification capacity of HepG2 cells. Previously, we established a HepG2/AFhGS cell line with overexpression of human glutamine synthetase (hGS) in pathway 1 and a HepG2/(hArgI+hOTC)4 cell line with overexpression of human arginase I (hArgI) and human ornithine transcarbamylase (hOTC) in pathway 2. The present study aimed to investigate whether simultaneous recovery of the two pathways contributes to the further improvement of ammonia detoxification in HepG2 cells. METHODS We adopted a recombinant retrovirus carrying the hGS gene to infect HepG2/(hArgI+hOTC)4 cells and selected a new recombinant HepG2 cell line. The capacities of ammonia tolerance and detoxification in cells were detected by biochemical methods. Cell cycle PCR chip was used to assess the changes of gene expression. RESULTS Introducing hGS into HepG2/(hArgI+hOTC)4 cells did not lead to hGS overexpression, but inhibited hArgI expression. The levels of synthetic glutamine and urea in HepG2/(hArgI+hOTC+AFhGS)1 cells were significantly lower than those in HepG2/(hArgI+hOTC)4 cells when cultured in the medium with 10 and 15 mmol/L glutamate (Glu) and with 60 and 180 mmol/L NH4Cl, respectively. In addition, the comparison of different cell growth showed that HepG2/AFhGS cells significantly lagged behind the other cells by the 5th and 7th day, indicating that introduction of hGS impedes HepG2 cell proliferation. Analysis of the mechanism suggested that the decreased expression of BCL2 played an important role. CONCLUSIONS This study demonstrated that the recovery of two ammonia metabolic pathways in HepG2 cells is not helpful in increasing ammonia metabolism. The reinforcement of the pathway of urea metabolism is more important and valuable in improving the ammonia metabolism capacity in HepG2 cells.
Collapse
Affiliation(s)
- Fei-Yuan Zhang
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| | | | | | | | | |
Collapse
|
7
|
Functional ultrasound imaging for assessment of extracellular matrix scaffolds used for liver organoid formation. Biomaterials 2013; 34:9341-51. [PMID: 24011714 DOI: 10.1016/j.biomaterials.2013.08.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/10/2013] [Indexed: 12/18/2022]
Abstract
A method of 3D functional ultrasound imaging has been developed to enable non-destructive assessment of extracellular matrix scaffolds that have been prepared by decellularization protocols and are intended for recellularization to create organoids. A major challenge in organ decellularization is retaining patent micro-vascular structures crucial for nutrient access and functionality of organoids. The imaging method described here provides statistical distributions of flow rates throughout the tissue volumes, 3D vessel network architecture visualization, characterization of microvessel volumes and sizes, and delineation of matrix from vascular circuits. The imaging protocol was tested on matrix scaffolds that are tissue-specific, but not species-specific, matrix extracts, prepared by a process that preserved >98% of the collagens, collagen-associated matrix components, and matrix-bound growth factors and cytokines. Image-derived data are discussed with respect to assessment of scaffolds followed by proof-of-concept studies in organoid establishment using Hep3B, a human hepatoblast-like cell line. Histology showed that the cells attached to scaffolds with patent vasculature within minutes, achieved engraftment at near 100%, expressed liver-specific functions within 24 h, and yielded evidence of proliferation and increasing differentiation of cells throughout the two weeks of culture studies. This imaging method should prove valuable in analyses of such matrix scaffolds.
Collapse
|
8
|
Ginai M, Elsby R, Hewitt CJ, Surry D, Fenner K, Coopman K. The use of bioreactors as in vitro models in pharmaceutical research. Drug Discov Today 2013; 18:922-35. [PMID: 23748137 DOI: 10.1016/j.drudis.2013.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/24/2013] [Accepted: 05/22/2013] [Indexed: 12/23/2022]
Abstract
Bringing a new drug to market is costly in terms of capital and time investments, and any development issues encountered during late-stage clinical trials can often be the result of in vitro-in vivo extrapolations (IVIVE) not accurately reflecting clinical outcome. In the discipline of drug metabolism and pharmacokinetics (DMPK), current in vitro cellular methods do not provide the 3D structure and function of organs found in vivo; therefore, new dynamic methods need to be established to aid improvement of IVIVE. In this review, we highlight the importance of model progression into dynamic systems for use within drug development, focusing on devices developed currently in the areas of the liver and blood-brain barrier (BBB), and the potential to develop models for other organ systems, such as the kidney. We discuss the development of dynamic 3D bioreactor-based systems as in vitro models for use in DMPK studies.
Collapse
Affiliation(s)
- Maaria Ginai
- Centre for Biological Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | | | | | | | | | | |
Collapse
|
9
|
Palakkan AA, Raj DK, Rojan J, Raj R.G. S, Anil Kumar P, Muraleedharan C, Kumary T. Evaluation of Polypropylene Hollow-Fiber Prototype Bioreactor for Bioartificial Liver. Tissue Eng Part A 2013; 19:1056-66. [DOI: 10.1089/ten.tea.2012.0332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Anwar Azad Palakkan
- Division of Implant Biology, Tissue Culture Lab, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Deepa K. Raj
- Division of Implant Biology, Tissue Culture Lab, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Jose Rojan
- Division of Implant Biology, Tissue Culture Lab, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Sajin Raj R.G.
- Division of Implant Biology, Tissue Culture Lab, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
- Device testing laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - P.R. Anil Kumar
- Division of Implant Biology, Tissue Culture Lab, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - C.V. Muraleedharan
- Device testing laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - T.V. Kumary
- Division of Implant Biology, Tissue Culture Lab, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| |
Collapse
|
10
|
|
11
|
Microencapsulation for the Therapeutic Delivery of Drugs, Live Mammalian and Bacterial Cells, and Other Biopharmaceutics: Current Status and Future Directions. JOURNAL OF PHARMACEUTICS 2012; 2013:103527. [PMID: 26555963 PMCID: PMC4595965 DOI: 10.1155/2013/103527] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/15/2012] [Indexed: 01/17/2023]
Abstract
Microencapsulation is a technology that has shown significant promise in biotherapeutics, and other applications. It has been proven useful in the immobilization of drugs, live mammalian and bacterial cells and other cells, and other biopharmaceutics molecules, as it can provide material structuration, protection of the enclosed product, and controlled release of the encapsulated contents, all of which can ensure efficient and safe therapeutic effects. This paper is a comprehensive review of microencapsulation and its latest developments in the field. It provides a comprehensive overview of the technology and primary goals of microencapsulation and discusses various processes and techniques involved in microencapsulation including physical, chemical, physicochemical, and other methods involved. It also summarizes the state-of-the-art successes of microencapsulation, specifically with regard to the encapsulation of microorganisms, mammalian cells, drugs, and other biopharmaceutics in various diseases. The limitations and future directions of microencapsulation technologies are also discussed.
Collapse
|
12
|
Microbiological safety of a novel bio-artificial liver support system based on porcine hepatocytes: a experimental study. Eur J Med Res 2012; 17:13. [PMID: 22632261 PMCID: PMC3419623 DOI: 10.1186/2047-783x-17-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 05/25/2012] [Indexed: 12/11/2022] Open
Abstract
Background Our institute has developed a novel bio-artificial liver (BAL) support system, based on a multi-layer radial-flow bioreactor carrying porcine hepatocytes and mesenchymal stem cells. It has been shown that porcine hepatocytes are capable of carrying infectious porcine endogenous retroviruses (PERVs) into human cells, thus the microbiological safety of any such system must be confirmed before clinical trials can be performed. In this study, we focused on assessing the status of PERV infection in beagles treated with the novel BAL. Methods Five normal beagles were treated with the novel BAL for 6 hours. The study was conducted for 6 months, during which plasma was collected from the BAL and whole blood from the beagles at regular intervals. DNA and RNA in both the collected peripheral blood mononuclear cells (PBMCs) and plasma samples were extracted for conventional PCR and reverse transcriptase (RT)-PCR with PERV-specific primers and the porcine-specific primer Sus scrofa cytochrome B. Meanwhile, the RT activity and the in vitro infectivity of the plasma were measured. Results Positive PERV RNA and RT activity were detected only in the plasma samples taken from the third circuit of the BAL system. All other samples including PBMCs and other plasma samples were negative for PERV RNA, PERV DNA, and RT activity. In the in vitro infection experiment, no infection was found in HEK293 cells treated with plasma. Conclusions No infective PERV was detected in the experimental animals, thus the novel BAL had a reliable microbiological safety profile.
Collapse
|
13
|
Adwan H, Fuller B, Seldon C, Davidson B, Seifalian A. Modifying three-dimensional scaffolds from novel nanocomposite materials using dissolvable porogen particles for use in liver tissue engineering. J Biomater Appl 2012; 28:250-61. [PMID: 22532408 PMCID: PMC4107826 DOI: 10.1177/0885328212445404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background: Although hepatocytes have a remarkable regenerative power, the rapidity of acute liver
failure makes liver transplantation the only definitive treatment. Attempts to
incorporate engineered three-dimensional liver tissue in bioartificial liver devices or
in implantable tissue constructs, to treat or bridge patients to self-recovery, were met
with many challenges, amongst which is to find suitable polymeric matrices. We studied
the feasibility of utilising nanocomposite polymers in three-dimensional scaffolds for
hepatocytes. Materials and methods: Hepatocytes (HepG2) were seeded on a flat sheet and in three-dimensional scaffolds made
of a nanocomposite polymer (Polyhedral Oligomeric Silsesquioxane [POSS]-modified
polycaprolactone urea urethane) alone as well as with porogen particles, i.e. glucose,
sodium bicarbonate and sodium chloride. The scaffold architecture, cell attachment and
morphology were studied with scanning electron microscopy, and we assessed cell
viability and functionality. Results: Cell attachment to the scaffolds was demonstrated. The scaffold made with glucose
particles as porogen showed a narrower range of pore size with higher porosity and
better inter-pore communications and seemed to encourage near normal cell morphology.
There was a steady increase of albumin secretion throughout the experiment while the
control (monolayer cell culture) showed a steep decrease after day 7. At the end of the
experiment, there was no significant difference in viability and functionality between
the scaffolds and the control. Conclusion: In this initial study, porogen particles were used to modify the scaffolds produced
from the novel polymer. Although there was no significance against the control in
functionality and viability, the demonstrable attachment on scanning electron microscopy
suggest potential roles for this polymer and in particular for scaffolds made with
glucose particles in liver tissue engineering.
Collapse
Affiliation(s)
- Hussamuddin Adwan
- University Department of Surgery, University College London, Royal Free Hospital, London, UK.
| | | | | | | | | |
Collapse
|
14
|
|
15
|
Pérez López S, Otero Hernández J. Advances in Stem Cell Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 741:290-313. [DOI: 10.1007/978-1-4614-2098-9_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Barakat O, Abbasi S, Rodriguez G, Rios J, Wood RP, Ozaki C, Holley LS, Gauthier PK. Use of decellularized porcine liver for engineering humanized liver organ. J Surg Res 2011; 173:e11-25. [PMID: 22099595 DOI: 10.1016/j.jss.2011.09.033] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/13/2011] [Accepted: 09/15/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND New bioartificial liver devices are needed to supplement the limited supply of organ donors available for patients with end-stage liver disease. Here, we report the results of a pilot study aimed at developing a humanized porcine liver by transplanting second trimester human fetal hepatocytes (Hfh) co-cultured with fetal stellate cells (Hfsc) into the decellularized matrix of a porcine liver. MATERIAL AND METHODS Ischemic livers were removed from 19 Yorkshire swine. Liver decellularization was achieved by an anionic detergent (SDS). The decellularized matrix of three separate porcine liver matrices was seeded with 3.5 × 10(8) and 1 × 10(9) of Hfsc and Hfh, respectively, and perfused for 3, 7, and 13 d. The metabolic and synthetic activities of the engrafted cells were assessed during and after perfusion. RESULTS Immunohistologic examination of the decellularized matrix showed removal of nuclear materials with intact architecture and preserved extracellular matrix (ECM) proteins. During perfusion of the recellularized matrices, measurement of metabolic parameters (i.e., oxygen concentration, glucose consumption, and lactate and urea production) indicated active metabolism. The average human albumin concentration was 29.48 ± 7.4 μg/mL. Immunohistochemical analysis revealed cell differentiation into mature hepatocytes. Moreover, 40% of the engrafted cells were actively proliferating, and less than 30% of cells were apoptotic. CONCLUSION We showed that our decellularization protocol successfully removed the cellular components of porcine livers while preserving the native architecture and most ECM protein. We also demonstrated the ability of the decellularized matrix to support and induce phenotypic maturation of engrafted Hfh in a continuously perfused system.
Collapse
Affiliation(s)
- Omar Barakat
- Department of Hepatobiliary and Transplantation Surgery, St. Luke's Episcopal Hospital, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Perfusion circuit concepts for hollow-fiber bioreactors used as in vitro cell production systems or ex vivo bioartificial organs. Int J Artif Organs 2011; 34:410-21. [PMID: 21623585 DOI: 10.5301/ijao.2011.8366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2011] [Indexed: 11/20/2022]
Abstract
For the development and implementation of primary human cell- and stem cell-based applications in regenerative medicine, large amounts of cells with well-defined characteristics are needed. Such cell quantities can be obtained with the use of hollow fiber-based bioreactors. While the use of such bioreactors generally requires a perfusion circuit, the configuration and complexity of such circuits is still in debate. We evaluated various circuit configurations to investigate potential perfusate volume shifts in the arterial and venous sides of the perfusion circuit, as well as in the feed and waste lines. Volume shifts with changes in flow conditions were measured with graduated bubble traps in the circuit, and perfusion pressures were measured at three points in the circuits. The results of this study demonstrate that the bioreactor perfusion circuit configuration has an effect on system pressures and volume shifts in the circuit. During operation, spikes in post-bioreactor pressures caused detrimental, potentially dangerous volume shifts in the feed and waste lines for configurations that lacked feed pumps and/or waste line check valves. Our results indicate that a more complex tubing circuit adds to safety of operation and avoids technical challenges associated with the use of large-scale hollow fiber bioreactors (e.g., for extracorporeal liver support or erythrocyte production from hematopoietic stem cells), including volume shifts and the need for a large reservoir. Finally, to ensure safe use of bioreactors, measuring pre-, intra-, and post-bioreactor pressures, and pump operation control is also advisable, which suggests the use of specifically developed bioreactor perfusion devices.
Collapse
|
18
|
Toni R, Tampieri A, Zini N, Strusi V, Sandri M, Dallatana D, Spaletta G, Bassoli E, Gatto A, Ferrari A, Martin I. Ex situ bioengineering of bioartificial endocrine glands: A new frontier in regenerative medicine of soft tissue organs. Ann Anat 2011; 193:381-94. [DOI: 10.1016/j.aanat.2011.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/14/2011] [Accepted: 06/17/2011] [Indexed: 01/14/2023]
|
19
|
Abstract
PURPOSE OF REVIEW Acute-on-chronic liver failure (ACLF), a syndrome precipitated by acute liver injury in patients with advanced cirrhosis, is associated with multiorgan dysfunction and high rates of mortality. Liver support systems have been developed in an attempt to improve survival of patients with ACLF by providing a bridge until recovery of the native liver function. RECENT FINDINGS Nonbiological devices such as molecular adsorbent recirculating system (MARS) and fractionated plasma separation and adsorption (Prometheus) are effective in improving severe hepatic encephalopathy and cholestasis, have good safety and tolerability profiles and are frequently employed in patients with ACLD; however, randomized controlled trials (RCTs) failed to show improvement in survival. Biologic devices that incorporate hepatic cells in bioreactors are also under development. Recent data from pilot studies suggested improvement in survival rates in some groups of patients with ACLF; however, their effect on patient survival in RCT is still unknown. SUMMARY Liver support systems are safe and well tolerated when used in management of patients with ACLF. Their use should continue in controlled clinical trials to explore their role in bridging patients to liver transplantation or recovery in well defined patient groups.
Collapse
|
20
|
Han B, Shi XL, Xiao JQ, Zhang Y, Chu XH, Gu JY, Tan JJ, Gu ZZ, Ding YT. Influence of chitosan nanofiber scaffold on porcine endogenous retroviral expression and infectivity in pig hepatocytes. World J Gastroenterol 2011; 17:2774-80. [PMID: 21734784 PMCID: PMC3122264 DOI: 10.3748/wjg.v17.i22.2774] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/15/2010] [Accepted: 11/22/2010] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the influence of chitosan nanofiber scaffold on the production and infectivity of porcine endogenous retrovirus (PERV) expressed by porcine hepatocytes.
METHODS: Freshly isolated porcine hepatocytes were cultured with or without chitosan nanofiber scaffold (defined as Nano group and Hep group) for 7 d. The daily collection of culture medium was used to detect reverse transcriptase (RT) activity with RT activity assay kits and PERV RNA by reverse transcription-polymerase chain reaction (PCR) and real time PCR with the PERV specific primers. And Western blotting was performed with the lysates of daily retrieved cells to determine the PERV protein gag p30. Besides, the in-vitro infectivity of the supernatant was tested by incubating the human embryo kidney 293 (HEK293) cells.
RESULTS: The similar changing trends between two groups were observed in real time PCR, RT activity assay and Western blotting. Two peaks of PERV expression at 10H and Day 2 were found and followed by a regular decline. No significant difference was found between two groups except the significantly high level of PERV RNA at Day 6 and PERV protein at Day 5 in Nano group than that in Hep group. And in the in-vitro infection experiment, no HEK293 cell was infected by the supernatant.
CONCLUSION: Chitosan nanofiber scaffold might prolong the PERV secreting time in pig hepatocytes but would not obviously influence its productive amount and infectivity, so it could be applied in the bioartificial liver without the increased risk of the virus transmission.
Collapse
|
21
|
Nussler AK, Zeilinger K, Schyschka L, Ehnert S, Gerlach JC, Yan X, Lee SML, Ilowski M, Thasler WE, Weiss TS. Cell therapeutic options in liver diseases: cell types, medical devices and regulatory issues. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1087-1099. [PMID: 21461918 DOI: 10.1007/s10856-011-4306-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 03/24/2011] [Indexed: 05/30/2023]
Abstract
Although significant progress has been made in the field of orthotopic liver transplantation, cell-based therapies seem to be a promising alternative to whole-organ transplantation. The reasons are manifold but organ shortage is the main cause for this approach. However, many problems such as the question which cell type should be used or which application site is best for transplantation have been raised. In addition, some clinicians have had success by cultivating liver cells in bioreactors for temporary life support. Besides answering the question which cell type, which injection site or even which culture form should be used for liver support recent international harmonization of legal requirements is needed to be addressed by clinicians, scientists and companies dealing with cellular therapies. We here briefly summarize the possible cell types used to partially or temporarily correct liver diseases, the most recent development of bioreactor technology and important regulatory issues.
Collapse
Affiliation(s)
- Andreas K Nussler
- Department of Traumatology, MRI, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mandenius CF, Andersson TB, Alves PM, Batzl-Hartmann C, Björquist P, Carrondo MJ, Chesne C, Coecke S, Edsbagge J, Fredriksson JM, Gerlach JC, Heinzle E, Ingelman-Sundberg M, Johansson I, Küppers-Munther B, Müller-Vieira U, Noor F, Zeilinger K. Toward Preclinical Predictive Drug Testing for Metabolism and Hepatotoxicity by Using In Vitro Models Derived from Human Embryonic Stem Cells and Human Cell Lines — A Report on the Vitrocellomics EU-project. Altern Lab Anim 2011; 39:147-71. [DOI: 10.1177/026119291103900210] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Drug-induced liver injury is a common reason for drug attrition in late clinical phases, and even for post-launch withdrawals. As a consequence, there is a broad consensus in the pharmaceutical industry, and within regulatory authorities, that a significant improvement of the current in vitro test methodologies for accurate assessment and prediction of such adverse effects is needed. For this purpose, appropriate in vivo-like hepatic in vitro models are necessary, in addition to novel sources of human hepatocytes. In this report, we describe recent and ongoing research toward the use of human embryonic stem cell (hESC)-derived hepatic cells, in conjunction with new and improved test methods, for evaluating drug metabolism and hepatotoxicity. Recent progress on the directed differentiation of human embryonic stem cells to the functional hepatic phenotype is reported, as well as the development and adaptation of bioreactors and toxicity assay technologies for the testing of hepatic cells. The aim of achieving a testing platform for metabolism and hepatotoxicity assessment, based on hESC-derived hepatic cells, has advanced markedly in the last 2–3 years. However, great challenges still remain, before such new test systems could be routinely used by the industry. In particular, we give an overview of results from the Vitrocellomics project (EU Framework 6) and discuss these in relation to the current state-of-the-art and the remaining difficulties, with suggestions on how to proceed before such in vitro systems can be implemented in industrial discovery and development settings and in regulatory acceptance.
Collapse
Affiliation(s)
| | - Tommy B. Andersson
- Karolinska Institute, Department of Physiology and Pharmacology, Stockholm, Sweden
- Development DMPK & Bioanalysis, AstraZeneca R&D, Mölndal, Sweden
| | | | | | | | | | | | - Sandra Coecke
- ECVAM, Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | | | | | - Jörg C. Gerlach
- Experimental Surgery, Charité Universitätsmedizin, Berlin, Germany
| | - Elmar Heinzle
- Biochemical Engineering, Saarland University, Saarbrücken, Germany
| | | | - Inger Johansson
- Karolinska Institute, Department of Physiology and Pharmacology, Stockholm, Sweden
| | | | | | - Fozia Noor
- Biochemical Engineering, Saarland University, Saarbrücken, Germany
| | - Katrin Zeilinger
- Experimental Surgery, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
23
|
Bioartificial liver devices: Perspectives on the state of the art. Front Med 2010; 5:15-9. [PMID: 21088931 DOI: 10.1007/s11684-010-0110-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/12/2010] [Indexed: 01/28/2023]
Abstract
Acute liver failure remains a significant cause of morbidity and mortality. Bioartificial liver (BAL) devices have been in development for more than 20 years. Such devices aim to temporarily take over the metabolic and excretory functions of the liver until the patients' own liver has recovered or a donor liver becomes available for transplant. The important issues include the choice of cell materials and the design of the bioreactor. Ideal BAL cell materials should be of good viability and functionality, easy to access, and exclude immunoreactive and tumorigenic cell materials. Unfortunately, the current cells in use in BAL do not meet these requirements. One of the challenges in BAL development is the improvement of current materials; another key point concerning cell materials is the coculture of different cells. The bioreactor is an important component of BAL, because it determines the viability and function of the hepatocytes within it. From the perspective of bioengineering, a successful and clinically effective bioreactor should mimic the structure of the liver and provide an in vivo-like microenvironment for the growth of hepatocytes, thereby maintaining the cells' viability and function to the maximum extent. One future trend in the development of the bioreactor is to improve the oxygen supply system. Another direction for future research on bioreactors is the application of biomedical materials. In conclusion, BAL is, in principle, an important therapeutic strategy for patients with acute liver failure, and may also be a bridge to liver transplantation. It requires further research and development, however, before it can enter clinical practice.
Collapse
|
24
|
Davidson AJ, Ellis MJ, Chaudhuri JB. A theoretical method to improve and optimize the design of bioartificial livers. Biotechnol Bioeng 2010; 106:980-8. [PMID: 20506230 DOI: 10.1002/bit.22765] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bioartificial livers (BALs) are a potentially effective countermeasure against liver failure, particularly in cases of acute or fulminant liver failure. It is hoped these devices can sustain a patient's liver function until recovery or transplant. However, no large-scale clinical trial has yet proven that BALs are particularly effective and evidently design issues remain to be addressed. One aspect of BAL design that must be considered is the mass transfer of adequate oxygen to the hepatocytes within the device. We present here a mathematical modeling approach to oxygen mass transport in a BAL. A mathematical model based upon Krogh cylinders is outlined to describe a diffusion-limited hollow fiber bioreactor. In addition, operating constraints are defined on the system--cells should not experience hypoxia and the cell population should be of adequate size. By combining modeling results with these operating constraints and presenting the results graphically, "operating region" charts can be constructed for the hollow fiber BAL (HF-BAL). The effects of varying various operating parameters on the BAL are then established. It is found that smaller radii and short, thin walled fibers are generally advantageous while cell populations in excess of 10 billion could be supported in the BAL with a plasma flow rate of 200 mL/min. For fibers of intermediate length and lumen radius, the minimum number of fibers required to produce a viable design ranges approximately from 7,000-10,000. In theory, this may be enough to support patients with failing livers.
Collapse
Affiliation(s)
- Adam J Davidson
- Department of Chemical Engineering, Centre for Regenerative Medicine, University of Bath, Bath BA2 7AY, UK
| | | | | |
Collapse
|
25
|
Abstract
In vitro hepatocyte models represent very useful systems in both fundamental research and various application areas. Primary hepatocytes appear as the closest model for the liver in vivo. However, they are phenotypically unstable, have a limited life span and in addition, exhibit large interdonor variability when of human origin. Hepatoma cell lines appear as an alternative but only the HepaRG cell line exhibits various functions, including major cytochrome P450 activities, at levels close to those found in primary hepatocytes. In vitro hepatocyte models have brought a substantial contribution to the understanding of the biochemistry, physiology, and cell biology of the normal and diseased liver and in various application domains such as xenobiotic metabolism and toxicity, virology, parasitology, and more generally cell therapies. In the future, new well-differentiated hepatocyte cell lines derived from tumors or from either embryonic or adult stem cells might be expected and although hepatocytes will continue to be used in various fields, these in vitro liver models should allow marked advances, especially in cell-based therapies and predictive and mechanistic hepatotoxicity of new drugs and other chemicals. All models will benefit from new developments in throughput screening based on cell chips coupled with high-content imaging and in toxicogenomics technologies.
Collapse
|
26
|
Ring A, Gerlach J, Peters G, Pazin BJ, Minervini CF, Turner ME, Thompson RL, Triolo F, Gridelli B, Miki T. Hepatic Maturation of Human Fetal Hepatocytes in Four-Compartment Three-Dimensional Perfusion Culture. Tissue Eng Part C Methods 2010; 16:835-45. [DOI: 10.1089/ten.tec.2009.0342] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Alexander Ring
- Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitäts Medizin Berlin, Division of Experimental Surgery, Berlin, Germany
| | - Jörg Gerlach
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Grant Peters
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Benjamin J. Pazin
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Crescenzio F. Minervini
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | - Fabio Triolo
- Regenerative Medicine and Cell Therapy Unit, ISMETT—Mediterranean Institute for Transplantation and Advanced Specialized Therapies, Palermo, Italy
| | - Bruno Gridelli
- Regenerative Medicine and Cell Therapy Unit, ISMETT—Mediterranean Institute for Transplantation and Advanced Specialized Therapies, Palermo, Italy
| | - Toshio Miki
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
27
|
Abstract
To predict the timing and nature of future changes in the practice of blood transfusion, several factors must be considered. The historical rate of change of a scientific field can often provide a rough guide to the rate of future progress. To improve the accuracy of these predictions, historical rates must be adjusted to take into account the decelerating effects of technological or methodological barriers to progress, together with the potentially accelerating effects of transformative technology breakthroughs and unmet needs in the field that act as drivers for change. The cumulative impact of unpredictable and, often, limited availability of traditional blood donors, increasingly elderly populations, the potential for storage-associated adverse events, and increasingly prevalent transfusion-transmittable diseases is likely to provide significant drive to develop transformational alternatives to current transfusion practices. Considering the current stage of development of stem cell-based therapeutics and the rates of change in clinically compatible bioreactors and cell sorting systems, it is reasonable to believe that stem cell-based ex vivo manufacture of blood components will become routine, robust, and reliable within the next decade.
Collapse
Affiliation(s)
- Stewart Abbot
- Celgene Cellular Therapeutics, 7 Powderhorn Drive, Warren, NJ 07059, USA.
| |
Collapse
|
28
|
Fonsato V, Herrera MB, Buttiglieri S, Gatti S, Camussi G, Tetta C. Use of a rotary bioartificial liver in the differentiation of human liver stem cells. Tissue Eng Part C Methods 2010; 16:123-32. [PMID: 19397473 DOI: 10.1089/ten.tec.2008.0634] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The use of bioartificial livers (BALs) for the expansion of human adult liver stem cells and the production of growth factors could be a potential strategy for cell-based extracorporeal liver support. The present study aimed to assessing the differentiation of human adult liver stem cells in a rotary BAL. Liver stem cells were seeded into a polysulphone membrane filter at a density of 3 x 10(8) cells, and the filter was connected to a rotary bioreactor perfusion system (37 degrees C, 50 mL/min, 48 h). Viability, cell differentiation, and metabolic performances were evaluated at 24 and 48 h. Hepatocyte growth factor production from human adult liver stem cells, mature hepatocytes, and mesenchymal stem cells in adhesion and in the rotary BAL conditions was compared. Liver stem cells cultured in the rotary BAL produced the highest amounts of albumin (p = 0.002) and ammonia-induced urea (p = 0.0001), and had an increased cytochrome P450 expression in respect to liver stem cells in adhesion. Remarkably, liver stem cells in the rotary BAL produced very high amounts of hepatocyte growth factor (p = 0.005) in respect to hepatocytes and mesenchymal stem cells. Moreover, the cells lost their stem cell markers and acquired several markers of mature hepatocytes. In conclusion, the rotary BAL favored liver stem cell differentiation into mature hepatocyte-like cells.
Collapse
Affiliation(s)
- Valentina Fonsato
- Department of Internal Medicine, University of Turin , San Giovanni Battista Molinette Hospital,Turin, Italy.
| | | | | | | | | | | |
Collapse
|
29
|
Prince JM, Vodovotz Y, Baun MJ, Monga SP, Billiar TR, Gerlach JC. The nitric oxide donor S-nitrosoglutathione reduces apoptotic primary liver cell loss in a three-dimensional perfusion bioreactor culture model developed for liver support. Tissue Eng Part A 2010; 16:861-6. [PMID: 19814591 DOI: 10.1089/ten.tea.2009.0256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Artificial extracorporeal support for hepatic failure has met with limited clinical success. In hepatocytes, nitric oxide (NO) functions as an antiapoptotic modulator in response to a variety of stresses. We hypothesized that NO administration would yield improved viability and hepatocellular restructuring in a four-compartment, hollow fiber-based bioreactor with integral oxygenation for dynamic three-dimensional perfusion of hepatic cells in bioartificial liver support systems. METHODS Isolated adult rat liver cells were placed in culture medium alone (control) or medium supplemented with various concentrations of an NO donor (S-nitrosoglutathione [GSNO]) in the bioreactors. Media samples were obtained from the cell perfusion circuit to monitor cellular response. After 24 and 72 h, histology biopsies were taken to investigate spontaneous restructuring of the cells. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was performed to quantify apoptotic nuclei. RESULTS Control bioreactors exhibited 47.9 +/- 2.9% (mean +/- standard error of the mean) apoptotic nuclei. In contrast, NO-treated bioreactors exhibited a biphasic response. Fewer apoptotic nuclei were seen in the 200 and 500 microM GSNO groups (14.4 +/- 0.4%). No effect was observed in the 10 microM GSNO group (47.3%), and increased TUNEL staining was observed in the 1000 microM GSNO group (82.6%). Media lactate dehydrogenase levels were lower in bioreactor groups treated with 200 or 500 microM GSNO (310 +/- 38 IU/L) compared with the control group (919 +/- 188 IU/L; p < 0.05). Protein synthesis was not affected, as measured by albumin levels in the media (115 +/- 19 microg/day/cell inoculum in GSNO-treated bioreactors at 24 h vs. 110 +/- 13 in controls; p = 0.851). Histologically, all of the bioreactor groups exhibited liver cell aggregates with some attached to the bioreactor capillaries. Increased numbers of cells in the aggregates and superior spontaneous restructuring of the cells were seen at 24 and 72 h in the bioreactor groups treated with either 200 or 500 microM GSNO compared with the control groups. CONCLUSION Addition of an NO donor reduces adult rat liver cell apoptosis during the initial 24 h after cell inoculation within a three-dimensional perfusion bioreactor system for liver support and promotes liver cell aggregation and spontaneous restructuring of the cells at 24 and 72 h. GSNO-treated bioreactors remain metabolically active and show significantly lower levels of cellular injury as compared with controls. Further studies will be required to evaluate the impact of NO treatment of liver support bioreactors for clinical studies.
Collapse
Affiliation(s)
- Jose M Prince
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA
| | | | | | | | | | | |
Collapse
|
30
|
Mechatronics design principles for biotechnology product development. Trends Biotechnol 2010; 28:230-6. [DOI: 10.1016/j.tibtech.2010.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/10/2010] [Accepted: 02/17/2010] [Indexed: 11/19/2022]
|
31
|
Pereira-Rodrigues N, Poleni PE, Guimard D, Arakawa Y, Sakai Y, Fujii T. Modulation of hepatocarcinoma cell morphology and activity by parylene-C coating on PDMS. PLoS One 2010; 5:e9667. [PMID: 20300511 PMCID: PMC2838777 DOI: 10.1371/journal.pone.0009667] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 02/15/2010] [Indexed: 01/07/2023] Open
Abstract
Background The ability to understand and locally control the morphogenesis of mammalian cells is a fundamental objective of cell and developmental biology as well as tissue engineering research. We present parylene-C (ParC) deposited on polydimethylsiloxane (PDMS) as a new substratum for in vitro advanced cell culture in the case of Human Hepatocarcinoma (HepG2) cells. Principal Findings Our findings establish that the intrinsic properties of ParC-coated PDMS (ParC/PDMS) influence and modulate initial extracellular matrix (ECM; here, type-I collagen) surface architecture, as compared to non-coated PDMS substratum. Morphological changes induced by the presence of ParC on PDMS were shown to directly affect liver cell metabolic activity and the expression of transmembrane receptors implicated in cell adhesion and cell-cell interaction. These changes were characterized by atomic force microscopy (AFM), which elucidated differences in HepG2 cell adhesion, spreading, and reorganization into two- or three-dimensional structures by neosynthesis of ECM components. Local modulation of cell aggregation was successfully performed using ParC/PDMS micropatterns constructed by simple microfabrication. Conclusion/Significance We demonstrated for the first time the modulation of HepG2 cells' behavior in relation to the intrinsic physical properties of PDMS and ParC, enabling the local modulation of cell spreading in a 2D or 3D manner by simple microfabrication techniques. This work will provide promising insights into the development of cell-based platforms that have many applications in the field of in vitro liver tissue engineering, pharmacology and therapeutics.
Collapse
Affiliation(s)
| | - Paul-Emile Poleni
- CIRMM, Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- LIMMS/CNRS-IIS, Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- * E-mail:
| | - Denis Guimard
- Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| | - Yasuhiko Arakawa
- Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| | - Yasuyuki Sakai
- LIMMS/CNRS-IIS, Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| | - Teruo Fujii
- CIRMM, Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- LIMMS/CNRS-IIS, Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| |
Collapse
|
32
|
Kung JWC, Forbes SJ. Stem cells and liver repair. Curr Opin Biotechnol 2010; 20:568-74. [PMID: 19837579 DOI: 10.1016/j.copbio.2009.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 09/16/2009] [Indexed: 12/20/2022]
Abstract
The liver has considerable inherent regenerative capacity through hepatocyte division and hepatic progenitor cell proliferation. In chronic disease regeneration eventually fails and liver transplantation is the only curative treatment. Current work aims to restore liver mass and functionality either through transplantation of stem cell derived hepatocyte-like cells or by stimulating endogenous liver repair. Human embryonic stem cells (ESCs) and adult somatic cells can be differentiated into hepatocyte-like cells with potential use in drug testing, bio-artificial livers and transplantation. These cells still have some limitations in functionality, understanding further human liver development and improving tissue culture is required. The use of stem cells and their progeny in animal models of liver disease has been encouraging and stimulated clinical trials to commence.
Collapse
Affiliation(s)
- Janet W C Kung
- MRC Centre for Regenerative Medicine, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| | | |
Collapse
|
33
|
Darwiche H, Petersen BE. Biology of the adult hepatic progenitor cell: "ghosts in the machine". PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 97:229-49. [PMID: 21074735 PMCID: PMC3122078 DOI: 10.1016/b978-0-12-385233-5.00008-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This chapter reviews some of the basic biological principles governing adult progenitor cells of the liver and the mechanisms by which they operate. If scientists were better able to understand the conditions that govern stem cell mechanics in the liver, it may be possible to apply that understanding in a clinical setting for use in the treatment or cure of human pathologies. This chapter gives a basic introduction to hepatic progenitor cell biology and explores what is known about progenitor cell-mediated liver regeneration. We also discuss the putative stem cell niche in the liver, as well as the signaling pathways involved in stem cell regulation. Finally, the isolation and clinical application of stem cells to human diseases is reviewed, along with the current thoughts on the relationship between stem cells and cancer.
Collapse
Affiliation(s)
- Houda Darwiche
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|
34
|
Gu J, Shi X, Zhang Y, Chu X, Hang H, Ding Y. Establishment of a three-dimensional co-culture system by porcine hepatocytes and bone marrow mesenchymal stem cells in vitro. Hepatol Res 2009; 39:398-407. [PMID: 19207578 DOI: 10.1111/j.1872-034x.2008.00472.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIM The application of porcine hepatocytes in liver support systems has been hampered by the short-term survival. Co-cultivation of hepatocytes with non-parenchymal cells may be beneficial for optimizing cell functions via heterotypic interactions. In this study, we present a new cultivation system of porcine hepatocytes and mesenchymal stem cells (MSCs) in a randomly distributed co-culture manner. METHODS Mononuclear cells were isolated from bone marrow aspirate of swines (n = 3) by density gradient centrifugation. MSCs were characterized by flow cytometry with CD29, CD44, CD45 and CD90, respectively. Then freshly isolated hepatocytes were simultaneously inoculated with MSCs in a hepatocyte dominant manner. The morphological and functional changes of heterotypic interactions were characterized. RESULTS Ninety percent MSCs of passage 3 were positive for CD29, CD44 and CD90, but negative for CD45. A rapid attachment and self-organization of three-dimensional hepatocyte aggregates were encouraged. The cell ultrastructure indicating heterotypic junctions remained similar to that of hepatocytes in vivo. Fluorescence microscopy further verified that MSCs served as a feeder layer for hepatocyte aggregates. Hepatocyte performance levels such as albumin secretion, urea synthesis and CYP3A1 induction were all significantly enhanced in co-culture group compared with hepatocyte homo-culture (P < 0.05). The best hepatic function levels were achieved on day 2 and moderately decreased in the following co-culture days. Moreover, the cell cycle of hepatocytes manifested the same trend in parallel to the enhancement of hepatocyte functionality. CONCLUSIONS A three-dimensional co-culture system by porcine hepatocytes and bone marrow MSCs was for the first time established in vitro. Enhanced liver-specific functions make such a co-culture system a promising tool for tissue engineering, cell biology, and bioartificial liver devices.
Collapse
Affiliation(s)
- Jinyang Gu
- Department of Hepatobiliary Surgery, DrumTower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
35
|
Transport advances in disposable bioreactors for liver tissue engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2009; 115:117-43. [PMID: 19499208 DOI: 10.1007/10_2008_34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Acute liver failure (ALF) is a devastating diagnosis with an overall survival of approximately 60%. Liver transplantation is the therapy of choice for ALF patients but is limited by the scarce availability of donor organs. The prognosis of ALF patients may improve if essential liver functions are restored during liver failure by means of auxiliary methods because liver tissue has the capability to regenerate and heal. Bioartificial liver (BAL) approaches use liver tissue or cells to provide ALF patients with liver-specific metabolism and synthesis products necessary to relieve some of the symptoms and to promote liver tissue regeneration. The most promising BAL treatments are based on the culture of tissue engineered (TE) liver constructs, with mature liver cells or cells that may differentiate into hepatocytes to perform liver-specific functions, in disposable continuous-flow bioreactors. In fact, adult hepatocytes perform all essential liver functions. Clinical evaluations of the proposed BALs show that they are safe but have not clearly proven the efficacy of treatment as compared to standard supportive treatments. Ambiguous clinical results, the time loss of cellular activity during treatment, and the presence of a necrotic core in the cell compartment of many bioreactors suggest that improvement of transport of nutrients, and metabolic wastes and products to or from the cells in the bioreactor is critical for the development of therapeutically effective BALs. In this chapter, advanced strategies that have been proposed over to improve mass transport in the bioreactors at the core of a BAL for the treatment of ALF patients are reviewed.
Collapse
|