1
|
Hillesheim A, Nordhoff C, Boergeling Y, Ludwig S, Wixler V. β-catenin promotes the type I IFN synthesis and the IFN-dependent signaling response but is suppressed by influenza A virus-induced RIG-I/NF-κB signaling. Cell Commun Signal 2014; 12:29. [PMID: 24767605 PMCID: PMC4021428 DOI: 10.1186/1478-811x-12-29] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2013] [Accepted: 04/15/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The replication cycle of most pathogens, including influenza viruses, is perfectly adapted to the metabolism and signal transduction pathways of host cells. After infection, influenza viruses activate several cellular signaling cascades that support their propagation but suppress those that interfere with viral replication. Accumulation of viral RNA plays thereby a central role. Its sensing by the pattern recognition receptors of the host cells leads to the activation of several signal transduction waves that result in induction of genes, responsible for the cellular innate immune response. Type I interferon (IFN) genes and interferon-stimulated genes (ISG) coding for antiviral-acting proteins, such as MxA, OAS-1 or PKR, are primary targets of these signaling cascades. β- and γ-catenin are closely related armadillo repeat-containing proteins with dual roles. At the cell membrane they serve as adapter molecules linking cell-cell contacts to microfilaments. In the cytosol and nucleus, the proteins form a transcriptional complex with the lymphoid enhancer factor/T-cell factor (LEF/TCF), regulating the transcription of many genes, thereby controlling different cellular functions such as cell cycle progression and differentiation. RESULTS In this study, we demonstrate that β- and γ-catenin are important regulators of the innate cellular immune response to influenza A virus (IAV) infections. They inhibit viral replication in lung epithelial cells by enhancing the virus-dependent induction of the IFNB1 gene and interferon-stimulated genes. Simultaneously, the prolonged infection counteracts the antiviral effect of β- and γ-catenin. Influenza viruses suppress β-catenin-dependent transcription by misusing the RIG-I/NF-κB signaling cascade that is induced in the course of infection by viral RNA. CONCLUSION We identified β- and γ-catenin as novel antiviral-acting proteins. While these factors support the induction of common target genes of the cellular innate immune response, their functional activity is suppressed by pathogen evasion.
Collapse
Affiliation(s)
- Andrea Hillesheim
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Carolin Nordhoff
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Yvonne Boergeling
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Stephan Ludwig
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Viktor Wixler
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| |
Collapse
|
2
|
Ludwig S. Disruption of virus-host cell interactions and cell signaling pathways as an anti-viral approach against influenza virus infections. Biol Chem 2011; 392:837-47. [PMID: 21823902 DOI: 10.1515/bc.2011.121] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Abstract
Influenza is still one of the major plagues worldwide with the threatening potential to cause pandemics. In recent years, increasing levels of resistance to the four FDA approved anti-influenza virus drugs have been described. This situation underlines the urgent need for novel anti-virals in preparation for future influenza epidemics or pandemics. Although the anti-virals currently in use target viral factors such as the neuraminidase or the M2 ion channel, there is an increase in pre-clinical approaches that focus on cellular factors or pathways that directly or indirectly interact with virus replication. This does not only include inhibitors of virus-supportive signaling cascades but also interaction blockers of viral proteins with host cell proteins. This review aims to highlight some of these novel approaches that represent a paradigm change in anti-viral strategies against the influenza virus. Although most of these approaches are still in an early phase of preclinical development they might be very promising particularly with respect to the prevention of viral resistance to potential drugs.
Collapse
Affiliation(s)
- Stephan Ludwig
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany.
| |
Collapse
|
3
|
Haidari M, Zhang W, Ganjehei L, Ali M, Chen Z. Inhibition of MLC phosphorylation restricts replication of influenza virus--a mechanism of action for anti-influenza agents. PLoS One 2011; 6:e21444. [PMID: 21731751 PMCID: PMC3121769 DOI: 10.1371/journal.pone.0021444] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2011] [Accepted: 05/28/2011] [Indexed: 01/21/2023] Open
Abstract
Influenza A viruses are a severe threat worldwide, causing large epidemics that kill thousands every year. Prevention of influenza infection is complicated by continuous viral antigenic changes. Newer anti-influenza agents include MEK/ERK and protein kinase C inhibitors; however, the downstream effectors of these pathways have not been determined. In this study, we identified a common mechanism for the inhibitory effects of a significant group of anti-influenza agents. Our studies showed that influenza infection activates a series of signaling pathways that converge to induce myosin light chain (MLC) phosphorylation and remodeling of the actin cytoskeleton. Inhibiting MLC phosphorylation by blocking RhoA/Rho kinase, phospholipase C/protein kinase C, and HRas/Raf/MEK/ERK pathways with the use of genetic or chemical manipulation leads to the inhibition of influenza proliferation. In contrast, the induction of MLC phosphorylation enhances influenza proliferation, as does activation of the HRas/Raf/MEK/ERK signaling pathway. This effect is attenuated by inhibiting MLC phosphorylation. Additionally, in intracellular trafficking studies, we found that the nuclear export of influenza ribonucleoprotein depends on MLC phosphorylation. Our studies provide evidence that modulation of MLC phosphorylation is an underlying mechanism for the inhibitory effects of many anti-influenza compounds.
Collapse
Affiliation(s)
- Mehran Haidari
- Department of Internal Medicine, Division of Cardiology, University of Texas Health Science Center at Houston, Houston, Texas, United States of America.
| | | | | | | | | |
Collapse
|
4
|
Affiliation(s)
- Lan Lin
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| | | |
Collapse
|
5
|
Heynisch B, Frensing T, Heinze K, Seitz C, Genzel Y, Reichl U. Differential activation of host cell signalling pathways through infection with two variants of influenza A/Puerto Rico/8/34 (H1N1) in MDCK cells. Vaccine 2010; 28:8210-8. [DOI: 10.1016/j.vaccine.2010.07.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/08/2009] [Revised: 07/05/2010] [Accepted: 07/22/2010] [Indexed: 01/12/2023]
|
6
|
Ehrhardt C, Seyer R, Hrincius ER, Eierhoff T, Wolff T, Ludwig S. Interplay between influenza A virus and the innate immune signaling. Microbes Infect 2010; 12:81-7. [PMID: 19782761 DOI: 10.1016/j.micinf.2009.09.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/09/2009] [Accepted: 09/15/2009] [Indexed: 02/07/2023]
Abstract
Pathogens such as influenza A viruses (IAV) have to overcome a number of barriers defined and maintained by the host, to successfully establish an infection. One of the initial barriers is collectively characterized as the innate immune system. This is a broad anti-pathogen defense program that ranges from the action of natural killer cells to the induction of an antiviral cytokine response. In this article we will focus on new developments and discoveries concerning the interaction of IAV with the cellular innate immune signaling. We discuss new mechanisms of interference of IAV with the pathogen recognition receptor RIG-I and the type I IFN antagonist NS1 in the background of already known and established concepts. Further we summarize progress related to recently identified IFN induced proteins and the role of RNA interference in the context of IAV infection.
Collapse
Affiliation(s)
- Christina Ehrhardt
- Institute of Molecular Virology (IMV), Center for Molecular Biology of Inflammation (ZMBE), Westfaelische-Wilhelms-University, Muenster, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Zhang L, Katz JM, Gwinn M, Dowling NF, Khoury MJ. Systems-based candidate genes for human response to influenza infection. INFECTION GENETICS AND EVOLUTION 2009; 9:1148-57. [PMID: 19647099 PMCID: PMC7106103 DOI: 10.1016/j.meegid.2009.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/19/2009] [Revised: 07/20/2009] [Accepted: 07/21/2009] [Indexed: 12/20/2022]
Abstract
Influenza A is a serious respiratory illness that can be debilitating and may cause complications leading to hospitalization and death. The outcome of infection with the influenza A virus is determined by a complex interplay of viral and host factors. With the ongoing threat of seasonal influenza and the potential emergence of new, more virulent strains of influenza viruses, we need to develop a better understanding of genetic variation in the human population and its association with severe outcomes from influenza infection. We propose a list of approximately 100 systems-based candidate genes for future study of the genetic basis of influenza disease and immunity in humans, based on evidence in the published literature for their potential role in the pathogenesis of this infection: binding of the virus to receptors on the host cell surface; cleavability of HA by host proteases; virus replication in host cells; destruction of host cells by apoptosis; state of immunocompetence of the individual host; and viral infections predisposing to bacterial infection.
Collapse
Affiliation(s)
- Lyna Zhang
- Office of Public Health Genomics, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | | | |
Collapse
|
8
|
Ludwig S. Targeting cell signalling pathways to fight the flu: towards a paradigm change in anti-influenza therapy. J Antimicrob Chemother 2009; 64:1-4. [DOI: 10.1093/jac/dkp161] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023] Open
|
9
|
Pauli EK, Schmolke M, Hofmann H, Ehrhardt C, Flory E, Münk C, Ludwig S. High level expression of the anti-retroviral protein APOBEC3G is induced by influenza A virus but does not confer antiviral activity. Retrovirology 2009; 6:38. [PMID: 19371434 PMCID: PMC2672920 DOI: 10.1186/1742-4690-6-38] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2008] [Accepted: 04/16/2009] [Indexed: 12/11/2022] Open
Abstract
Human APOBEC3G is an antiretroviral protein that was described to act via deamination of retroviral cDNA. However, it was suggested that APOBEC proteins might act with antiviral activity by yet other mechanisms and may also possess RNA deamination activity. As a consequence there is an ongoing debate whether APOBEC proteins might also act with antiviral activity on other RNA viruses. Influenza A viruses are single-stranded RNA viruses, capable of inducing a variety of antiviral gene products. In searching for novel antiviral genes against these pathogens, we detected a strong induction of APOBEC3G but not APOBEC3F gene transcription in infected cells. This upregulation appeared to be induced by the accumulation of viral RNA species within the infected cell and occurred in an NF-κB dependent, but MAP kinase independent manner. It further turned out that APOBEC expression is part of a general IFNβ response to infection. However, although strongly induced, APOBEC3G does not negatively affect influenza A virus propagation.
Collapse
Affiliation(s)
- Eva-K Pauli
- Institute of Molecular Virology, Centre of Molecular Biology of Inflammation (ZMBE), Westfaelische-Wilhelms-University Muenster, Münster, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Upon influenza A virus infection of cells, a wide variety of antiviral and virus‐supportive signalling pathways are induced. Phosphatidylinositol‐3‐kinase (PI3K) is a recent addition to the growing list of signalling mediators that are activated by these viruses. Several studies have addressed the role of PI3K and the downstream effector protein kinase Akt in influenza A virus‐infected cells. PI3K/Akt signalling is activated by diverse mechanisms in a biphasic manner and is required for multiple functions during infection. While the kinase supports activation of the interferon regulatory factor‐3 during antiviral interferon induction, it also exhibits virus supportive functions. In fact, PI3K not only regulates a very early step during viral entry but also results in suppression of premature apoptosis at later stages of infection. The latter function is dependent on the expression of the viral non‐structural protein‐1 (A/NS1). It has been shown that PI3K activation occurs by direct interaction of A/NS1 with the p85 regulatory subunit and interaction sites of A/NS1 and p85 have now been mapped in detail. Here, we summarize the current knowledge on influenza virus‐induced PI3K signalling and how this pathway supports viral propagation.
Collapse
Affiliation(s)
- Christina Ehrhardt
- Institute of Molecular Virology (IMV), Center of Molecular Biology of Inflammation (ZMBE), Westfaelische-Wilhelms-University, 48149 Muenster, Germany
| | | |
Collapse
|
11
|
Influenza A virus inhibits type I IFN signaling via NF-kappaB-dependent induction of SOCS-3 expression. PLoS Pathog 2008; 4:e1000196. [PMID: 18989459 PMCID: PMC2572141 DOI: 10.1371/journal.ppat.1000196] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2008] [Accepted: 10/09/2008] [Indexed: 12/25/2022] Open
Abstract
The type I interferon (IFN) system is a first line of defense against viral infections. Viruses have developed various mechanisms to counteract this response. So far, the interferon antagonistic activity of influenza A viruses was mainly observed on the level of IFNβ gene induction via action of the viral non-structural protein 1 (NS1). Here we present data indicating that influenza A viruses not only suppress IFNβ gene induction but also inhibit type I IFN signaling through a mechanism involving induction of the suppressor of cytokine signaling-3 (SOCS-3) protein. Our study was based on the observation that in cells that were infected with influenza A virus and subsequently stimulated with IFNα/β, phosphorylation of the signal transducer and activator of transcription protein 1 (STAT1) was strongly reduced. This impaired STAT1 activation was not due to the action of viral proteins but rather appeared to be induced by accumulation of viral 5′ triphosphate RNA in the cell. SOCS proteins are potent endogenous inhibitors of Janus kinase (JAK)/STAT signaling. Closer examination revealed that SOCS-3 but not SOCS-1 mRNA levels increase in an RNA- and nuclear factor kappa B (NF-κB)-dependent but type I IFN-independent manner early in the viral replication cycle. This direct viral induction of SOCS-3 mRNA and protein expression appears to be relevant for suppression of the antiviral response since in SOCS-3 deficient cells a sustained phosphorylation of STAT1 correlated with elevated expression of type I IFN-dependent genes. As a consequence, progeny virus titers were reduced in SOCS-3 deficient cells or in cells were SOCS-3 expression was knocked-down by siRNA. These data provide the first evidence that influenza A viruses suppress type I IFN signaling on the level of JAK/STAT activation. The inhibitory effect is at least in part due to the induction of SOCS-3 gene expression, which results in an impaired antiviral response. The type I interferon (IFN) system is one of the most powerful innate defenses against viral pathogens. Most RNA viruses are sensitive to the action of type I IFN. Therefore, these pathogens have evolved strategies to evade this response. For example, influenza viruses express a viral protein, the non-structural protein 1 (NS1), that suppresses production of IFNβ by lowering cellular sensitivity to viral nucleic acid as a pathogen pattern. Here we present data indicating that influenza A viruses are not only capable of suppressing production of the IFNβ gene but also inhibit action of this antiviral cytokine on cells. This occurs by viral induction of a cellular protein, the suppressor of cytokine signaling (SOCS)-3, a potent endogenous inhibitor of IFN signaling. This is a novel mechanism by which influenza viruses inhibit the antiviral response of the host and paves the path to efficient virus replication. This may be especially relevant for influenza viruses that induce high cytokine responses (cytokine burst), such as highly pathogenic avian influenza viruses of the H5N1 subtype. Induction of SOCS-3 expression would allow efficient replication despite high IFN and cytokine levels.
Collapse
|
12
|
Ludwig S, Planz O. Influenza viruses and the NF-κB signaling pathway – towards a novel concept of antiviral therapy. Biol Chem 2008; 389:1307-12. [DOI: 10.1515/bc.2008.148] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023]
Abstract
AbstractInfluenza A virus remains a major public health concern, both in its annual toll in death and debilitation and its potential to cause devastating pandemics. Like any other virus, influenza A viruses are strongly dependent on cellular factors for replication. One of the hallmark signaling factors activated by viral pathogens is the transcription factor NF-κB. Activation of NF-κB leads to the up-regulation of a variety of antiviral genes. Thus, the factor is commonly regarded as a major regulator of the innate immune defense to infection. However, several recent studies indicate that influenza viruses have acquired the capability to reprogram this antiviral activity and to exploit the factor for efficient replication. These data provide novel insights into the pathophysiological function of NF-κB in the special environment of a virus-infected cell. Furthermore, the unexpected viral dependency on a cellular signaling factor may pave the path for novel antiviral approaches targeting essential cellular components rather than viral factors.
Collapse
|
13
|
Mazur I, Wurzer WJ, Ehrhardt C, Pleschka S, Puthavathana P, Silberzahn T, Wolff T, Planz O, Ludwig S. Acetylsalicylic acid (ASA) blocks influenza virus propagation via its NF-kappaB-inhibiting activity. Cell Microbiol 2007; 9:1683-94. [PMID: 17324159 DOI: 10.1111/j.1462-5822.2007.00902.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
Influenza is still one of the major plagues worldwide. The statistical likeliness of a new pandemic outbreak highlights the urgent need for new and amply available antiviral drugs. We and others have shown that influenza virus misuses the cellular IKK/NF-kappaB signalling pathway for efficient replication suggesting that this module may be a suitable target for antiviral intervention. Here we examined acetylsalicylic acid (ASA), also known as aspirin, a widely used drug with a well-known capacity to inhibit NF-kappaB. We show that the drug efficiently blocks influenza virus replication in vitro and in vivo in a mechanism involving impaired expression of proapoptotic factors, subsequent inhibition of caspase activation as well as block of caspase-mediated nuclear export of viral ribonucleoproteins. As ASA showed no toxic side-effects or the tendency to induce resistant virus variants, existing salicylate-based aerosolic drugs may be suitable as anti-influenza agents. This is the first demonstration that specific targeting of a cellular factor is a suitable approach for anti-influenza virus intervention.
Collapse
MESH Headings
- Animals
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Aspirin/pharmacology
- Aspirin/therapeutic use
- Cell Line
- Humans
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza A Virus, H5N1 Subtype/drug effects
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza A Virus, H5N1 Subtype/physiology
- Influenza A Virus, H7N7 Subtype/drug effects
- Influenza A Virus, H7N7 Subtype/pathogenicity
- Influenza A Virus, H7N7 Subtype/physiology
- Mice
- Mice, Inbred C57BL
- NF-kappa B/antagonists & inhibitors
- Orthomyxoviridae Infections/drug therapy
- Orthomyxoviridae Infections/virology
- Virus Replication/drug effects
Collapse
Affiliation(s)
- Igor Mazur
- Institute of Molecular Virology, ZMBE, Westfaelische-Wilhelms-University, Von-Esmarch-Street 56, D-48149 Muenster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|