1
|
Morales-Hernández S, Ugidos-Damboriena N, López-Sagaseta J. Self-Assembling Protein Nanoparticles in the Design of Vaccines: 2022 Update. Vaccines (Basel) 2022; 10:1447. [PMID: 36146525 PMCID: PMC9505534 DOI: 10.3390/vaccines10091447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Vaccines constitute a pillar in the prevention of infectious diseases. The unprecedented emergence of novel immunization strategies due to the COVID-19 pandemic has again positioned vaccination as a pivotal measure to protect humankind and reduce the clinical impact and socioeconomic burden worldwide. Vaccination pursues the ultimate goal of eliciting a protective response in immunized individuals. To achieve this, immunogens must be efficiently delivered to prime the immune system and produce robust protection. Given their safety, immunogenicity, and flexibility to display varied and native epitopes, self-assembling protein nanoparticles represent one of the most promising immunogen delivery platforms. Currently marketed vaccines against the human papillomavirus, for instance, illustrate the potential of these nanoassemblies. This review is intended to provide novelties, since 2015, on the ground of vaccine design and self-assembling protein nanoparticles, as well as a comparison with the current emergence of mRNA-based vaccines.
Collapse
Affiliation(s)
- Sergio Morales-Hernández
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed-Public University of Navarra (UPNA), 31008 Pamplona, Spain
- Navarra University Hospital, 31008 Pamplona, Spain
| | - Nerea Ugidos-Damboriena
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed-Public University of Navarra (UPNA), 31008 Pamplona, Spain
- Navarra University Hospital, 31008 Pamplona, Spain
| | - Jacinto López-Sagaseta
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed-Public University of Navarra (UPNA), 31008 Pamplona, Spain
- Navarra University Hospital, 31008 Pamplona, Spain
| |
Collapse
|
2
|
Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, Easton AJ, Ahmadian G. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnology 2021; 19:59. [PMID: 33632278 PMCID: PMC7905985 DOI: 10.1186/s12951-021-00806-7] [Citation(s) in RCA: 383] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Virus-like particles (VLPs) are virus-derived structures made up of one or more different molecules with the ability to self-assemble, mimicking the form and size of a virus particle but lacking the genetic material so they are not capable of infecting the host cell. Expression and self-assembly of the viral structural proteins can take place in various living or cell-free expression systems after which the viral structures can be assembled and reconstructed. VLPs are gaining in popularity in the field of preventive medicine and to date, a wide range of VLP-based candidate vaccines have been developed for immunization against various infectious agents, the latest of which is the vaccine against SARS-CoV-2, the efficacy of which is being evaluated. VLPs are highly immunogenic and are able to elicit both the antibody- and cell-mediated immune responses by pathways different from those elicited by conventional inactivated viral vaccines. However, there are still many challenges to this surface display system that need to be addressed in the future. VLPs that are classified as subunit vaccines are subdivided into enveloped and non- enveloped subtypes both of which are discussed in this review article. VLPs have also recently received attention for their successful applications in targeted drug delivery and for use in gene therapy. The development of more effective and targeted forms of VLP by modification of the surface of the particles in such a way that they can be introduced into specific cells or tissues or increase their half-life in the host is likely to expand their use in the future. Recent advances in the production and fabrication of VLPs including the exploration of different types of expression systems for their development, as well as their applications as vaccines in the prevention of infectious diseases and cancers resulting from their interaction with, and mechanism of activation of, the humoral and cellular immune systems are discussed in this review.
Collapse
Affiliation(s)
- Saghi Nooraei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Howra Bahrulolum
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Zakieh Sadat Hoseini
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Camellia Katalani
- Sari Agriculture Science and Natural Resource University (SANRU), Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari, Iran
| | - Abbas Hajizade
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Andrew J Easton
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK.
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran.
| |
Collapse
|
3
|
Qian C, Liu X, Xu Q, Wang Z, Chen J, Li T, Zheng Q, Yu H, Gu Y, Li S, Xia N. Recent Progress on the Versatility of Virus-Like Particles. Vaccines (Basel) 2020; 8:vaccines8010139. [PMID: 32244935 PMCID: PMC7157238 DOI: 10.3390/vaccines8010139] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/15/2020] [Accepted: 03/15/2020] [Indexed: 12/11/2022] Open
Abstract
Virus-like particles (VLPs) are multimeric nanostructures composed of one or more structural proteins of a virus in the absence of genetic material. Having similar morphology to natural viruses but lacking any pathogenicity or infectivity, VLPs have gradually become a safe substitute for inactivated or attenuated vaccines. VLPs can achieve tissue-specific targeting and complete and effective cell penetration. With highly ordered epitope repeats, VLPs have excellent immunogenicity and can induce strong cellular and humoral immune responses. In addition, as a type of nanocarrier, VLPs can be used to display antigenic epitopes or deliver small molecules. VLPs have thus become powerful tools for vaccinology and biomedical research. This review highlights the versatility of VLPs in antigen presentation, drug delivery, and vaccine technology.
Collapse
Affiliation(s)
- Ciying Qian
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Xinlin Liu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Qin Xu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Zhiping Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Jie Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Tingting Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
| | - Ying Gu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
- Correspondence: (Y.G.); (S.L.)
| | - Shaowei Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
- Correspondence: (Y.G.); (S.L.)
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
| |
Collapse
|
4
|
Maenz C, Loscher C, Iwanski A, Bruns M. Inhibition of duck hepatitis B virus infection of liver cells by combined treatment with viral e antigen and carbohydrates. J Gen Virol 2009; 89:3016-3026. [PMID: 19008388 DOI: 10.1099/vir.0.2008/003541-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The e antigen (eAg) of duck hepatitis B virus (DHBV) is a glycosylated secretory protein with a currently unknown function. We concentrated this antigen from the supernatants of persistently infected primary duck liver cell cultures by ammonium sulphate precipitation, adsorption chromatography over concanavalin A Sepharose, preparative isoelectric focusing and molecular sieve chromatography. The combined treatment of duck liver cells with DHBV eAg (DHBe) concentrate and alpha-methyl-d-mannopyranoside strongly inhibited DHBV replication at de novo infection. When DHBe was added to non-infected primary duck liver cells, it was found to be associated with liver sinusoidal endothelial cells. This binding could be inhibited by the addition of alpha-methyl-d-mannopyranoside and other sugar molecules. The inhibitory effect of DHBe on infection could play a role in maintaining viral persistence.
Collapse
Affiliation(s)
- Claudia Maenz
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, 20251 Hamburg, Germany
| | - Christine Loscher
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, 20251 Hamburg, Germany
| | - Alicja Iwanski
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, 20251 Hamburg, Germany
| | - Michael Bruns
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, 20251 Hamburg, Germany
| |
Collapse
|