1
|
Silva Júnior JVJ, da Silva ANMR, da Silva Santos JJ, Gil LHVG. Reverse Genetics of Dengue Virus. Methods Mol Biol 2024; 2733:231-248. [PMID: 38064036 DOI: 10.1007/978-1-0716-3533-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Dengue virus (DENV) is one of the most important and widespread arthropod-borne viruses, causing millions of infections over the years. Considering its epidemiological importance, efforts have been directed towards understanding various aspects of DENV biology, which have been facilitated by the development of different molecular strategies for engineering viral genomes, such as reverse genetics approaches. Reverse genetic systems are a powerful tool for investigating virus-host interaction, for vaccine development, and for high-throughput screening of antiviral compounds. However, stable manipulation of DENV genomes is a major molecular challenge, especially when using conventional cloning systems. To circumvent this issue, we describe a simple and efficient yeast-based reverse genetics system to recover infectious DENV clones.
Collapse
Affiliation(s)
- José Valter Joaquim Silva Júnior
- Virology Sector, Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Virology Sector, Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | - Laura Helena Vega Gonzales Gil
- Laboratory of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE, Brazil.
| |
Collapse
|
2
|
Tamura T, Zhang J, Madan V, Biswas A, Schwoerer MP, Cafiero TR, Heller BL, Wang W, Ploss A. Generation and characterization of genetically and antigenically diverse infectious clones of dengue virus serotypes 1-4. Emerg Microbes Infect 2022; 11:227-239. [PMID: 34931940 PMCID: PMC8745371 DOI: 10.1080/22221751.2021.2021808] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dengue is caused by four genetically distinct viral serotypes, dengue virus (DENV) 1-4. Following transmission by Aedes mosquitoes, DENV can cause a broad spectrum of clinically apparent disease ranging from febrile illness to dengue hemorrhagic fever and dengue shock syndrome. Progress in the understanding of different dengue serotypes and their impacts on specific host-virus interactions has been hampered by the scarcity of tools that adequately reflect their antigenic and genetic diversity. To bridge this gap, we created and characterized infectious clones of DENV1-4 originating from South America, Africa, and Southeast Asia. Analysis of whole viral genome sequences of five DENV isolates from each of the four serotypes confirmed their broad genetic and antigenic diversity. Using a modified circular polymerase extension reaction (CPER), we generated de novo viruses from these isolates. The resultant clones replicated robustly in human and insect cells at levels similar to those of the parental strains. To investigate in vivo properties of these genetically diverse isolates, representative viruses from each DENV serotype were administered to NOD Rag1-/-, IL2rgnull Flk2-/- (NRGF) mice, engrafted with components of a human immune system. All DENV strains tested resulted in viremia in humanized mice and induced cellular and IgM immune responses. Collectively, we describe here a workflow for rapidly generating de novo infectious clones of DENV - and conceivably other RNA viruses. The infectious clones described here are a valuable resource for reverse genetic studies and for characterizing host responses to DENV in vitro and in vivo.
Collapse
Affiliation(s)
- Tomokazu Tamura
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jiayu Zhang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Vrinda Madan
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Abhishek Biswas
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.,Research Computing, Office of Information Technology, Princeton University, Princeton, NJ, USA
| | | | - Thomas R Cafiero
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Brigitte L Heller
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Wei Wang
- Carl Icahn Laboratory, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
3
|
Conradie AM, Stassen L, Huismans H, Potgieter CA, Theron J. Establishment of different plasmid only-based reverse genetics systems for the recovery of African horse sickness virus. Virology 2016; 499:144-155. [PMID: 27657835 PMCID: PMC7172382 DOI: 10.1016/j.virol.2016.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 12/24/2022]
Abstract
In an effort to simplify and expand the utility of African horse sickness virus (AHSV) reverse genetics, different plasmid-based reverse genetics systems were developed. Plasmids containing cDNAs corresponding to each of the full-length double-stranded RNA genome segments of AHSV-4 under control of a T7 RNA polymerase promoter were co-transfected in cells expressing T7 RNA polymerase, and infectious AHSV-4 was recovered. This reverse genetics system was improved by reducing the required plasmids from 10 to five and resulted in enhanced virus recovery. Subsequently, a T7 RNA polymerase expression cassette was incorporated into one of the AHSV-4 rescue plasmids. This modified 5-plasmid set enabled virus recovery in BSR or L929 cells, thus offering the possibility to generate AHSV-4 in any cell line. Moreover, mutant and cross-serotype reassortant viruses were recovered. These plasmid DNA-based reverse genetics systems thus offer new possibilities for investigating AHSV biology and development of designer AHSV vaccine strains. An entirely plasmid-based reverse genetics system was developed for AHSV. Novel improvements were made that increases flexibility of AHSV plasmid-based reverse genetics. Virus recovery efficiency was increased by reducing plasmids required for rescue from 10 to 5. T7 RNA polymerase encoded by rescue plasmid backbone allows virus recovery in different cell lines. Recombinant wild-type AHSV, mutant and reassortant viruses were rescued from plasmid cDNA only.
Collapse
Affiliation(s)
- Andelé M Conradie
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa
| | - Liesel Stassen
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa
| | - Henk Huismans
- Department of Genetics, University of Pretoria, Pretoria 0002, South Africa
| | - Christiaan A Potgieter
- Deltamune (Pty) Ltd., Lyttelton, Centurion, South Africa; Department of Biochemistry, Centre for Human Metabonomics, North-West University, Potchefstroom, South Africa
| | - Jacques Theron
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
4
|
Liu P, Li X, Gu J, Dong Y, Liu Y, Santhosh P, Chen X. Development of non-defective recombinant densovirus vectors for microRNA delivery in the invasive vector mosquito, Aedes albopictus. Sci Rep 2016; 6:20979. [PMID: 26879823 PMCID: PMC4754678 DOI: 10.1038/srep20979] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022] Open
Abstract
We previously reported that mosquito densoviruses (MDVs) are potential vectors for delivering foreign nucleic acids into mosquito cells. However, considering existing expression strategies, recombinant viruses would inevitably become replication-defective viruses and lose their ability for secondary transmission. The packaging limitations of the virion represent a barrier for the development of MDVs for viral paratransgenesis or as high-efficiency bioinsecticides. Herein, we report the development of a non-defective recombinant Aedes aegypti densovirus (AaeDV) miRNA expression system, mediated by an artificial intron, using an intronic miRNA expression strategy. We demonstrated that this recombinant vector could be used to overexpress endogenous miRNAs or to decrease endogenous miRNAs by generating antisense sponges to explore the biological functions of miRNAs. In addition, the vector could express antisense-miRNAs to induce efficient gene silencing in vivo and in vitro. The recombinant virus effectively self-replicated and retained its secondary transmission ability, similar to the wild-type virus. The recombinant virus was also genetically stable. This study demonstrated the first construction of a non-defective recombinant MDV miRNA expression system, which represents a tool for the functional analysis of mosquito genes and lays the foundation for the application of viral paratransgenesis for dengue virus control.
Collapse
Affiliation(s)
- Peiwen Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaocong Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jinbao Gu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yunqiao Dong
- Reproductive Medical Center of Guangdong Women and Children Hospital, Guangzhou, Guangdong, 511442, China
| | - Yan Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Puthiyakunnon Santhosh
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaoguang Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
5
|
Du R, Wang M, Hu Z, Wang H, Deng F. An in vitro recombination-based reverse genetic system for rapid mutagenesis of structural genes of the Japanese encephalitis virus. Virol Sin 2015; 30:354-62. [PMID: 26463213 DOI: 10.1007/s12250-015-3623-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/22/2015] [Indexed: 01/12/2023] Open
Abstract
Japanese encephalitis virus (JEV) is one of the most common pathogens of severe viral encephalitis, which is a severe threat to human health. Despite instability of the JEV genome in bacteria, many strategies have been developed to establish molecular clone systems of JEV, providing convenient tools for studying the virus life cycle and virus-host interactions. In this study, we adapted an In-Fusion enzyme-based in vitro recombination method to construct a reverse genetic system of JEV, thereby providing a rapid approach to introduce mutations into the structural genes. A truncated genome without the structural genes was constructed as the backbone, and the complementary segment containing the structural genes was recombined in vitro, which was then transfected directly into virus-permissive cells. The progeny of the infectious virus was successfully detected in the supernatant of the transfected cells, and showed an identical phenotype to its parental virus. To provide a proof-of-principle, the 12 conserved cysteine residues in the envelope (E) protein of JEV were respectively mutated using this approach, and all mutations resulted in a complete failure to generate infectious virus. However, a leucine-tophenylanine mutation at amino acid 107 of the E protein did not interfere with the production of the infectious virus. These results suggested that all 12 cysteines in the E protein are essential for the JEV life cycle. In summary, a novel reverse genetic system of JEV was established for rapidly introducing mutations into structural genes, which will serve as a useful tool for functional studies.
Collapse
Affiliation(s)
- Ruikun Du
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
6
|
Flavivirus reverse genetic systems, construction techniques and applications: a historical perspective. Antiviral Res 2014; 114:67-85. [PMID: 25512228 PMCID: PMC7173292 DOI: 10.1016/j.antiviral.2014.12.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022]
Abstract
The study of flaviviruses, which cause some of the most important emerging tropical and sub-tropical human arbovirus diseases, has greatly benefited from the use of reverse genetic systems since its first development for yellow fever virus in 1989. Reverse genetics technology has completely revolutionized the study of these viruses, making it possible to manipulate their genomes and evaluate the direct effects of these changes on their biology and pathogenesis. The most commonly used reverse genetics system is the infectious clone technology. Whilst flavivirus infectious clones provide a powerful tool, their construction as full-length cDNA molecules in bacterial vectors can be problematic, laborious and time consuming, because they are often unstable, contain unwanted induced substitutions and may be toxic for bacteria due to viral protein expression. The incredible technological advances that have been made during the past 30years, such as the use of PCR or new sequencing methods, have allowed the development of new approaches to improve preexisting systems or elaborate new strategies that overcome these problems. This review summarizes the evolution and major technical breakthroughs in the development of flavivirus reverse genetics technologies and their application to the further understanding and control of these viruses and their diseases.
Collapse
|
7
|
Abstract
The development of dengue virus "reverse genetic" systems based on full-length cDNA clones corresponding to the viral RNA genome has been an important technological platform for advancing dengue virus research. Mutations can be introduced into the genome to study their effect on virus replication and pathogenesis while attenuated or chimeric viruses can be constructed that are potential vaccine candidates. The deletion of the virus structural genes has led to the production of noninfectious, but replication competent viral subgenomes (termed replicons) that have been used to study viral replication and are useful for the screening of antiviral compounds. This article describes the development of dengue virus reverse genetic systems and protocols to manipulate the viral genome, recover infectious virus, and produce replicon-containing cell lines.
Collapse
|
8
|
Pu SY, Wu RH, Tsai MH, Yang CC, Chang CM, Yueh A. A novel approach to propagate flavivirus infectious cDNA clones in bacteria by introducing tandem repeat sequences upstream of virus genome. J Gen Virol 2014; 95:1493-1503. [DOI: 10.1099/vir.0.064915-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Despite tremendous efforts to improve the methodology for constructing flavivirus infectious cDNAs, the manipulation of flavivirus cDNAs remains a difficult task in bacteria. Here, we successfully propagated DNA-launched type 2 dengue virus (DENV2) and Japanese encephalitis virus (JEV) infectious cDNAs by introducing seven repeats of the tetracycline-response element (7×TRE) and a minimal cytomegalovirus (CMVmin) promoter upstream of the viral genome. Insertion of the 7×TRE-CMVmin sequence upstream of the DENV2 or JEV genome decreased the cryptic E. coli promoter (ECP) activity of the viral genome in bacteria, as measured using fusion constructs containing DENV2 or JEV segments and the reporter gene Renilla luciferase in an empty vector. The growth kinetics of recombinant viruses derived from DNA-launched DENV2 and JEV infectious cDNAs were similar to those of parental viruses. Similarly, RNA-launched DENV2 infectious cDNAs were generated by inserting 7×TRE-CMVmin, five repeats of the GAL4 upstream activating sequence, or five repeats of BamHI linkers upstream of the DENV2 genome. All three tandem repeat sequences decreased the ECP activity of the DENV2 genome in bacteria. Notably, 7×TRE-CMVmin stabilized RNA-launched JEV infectious cDNAs and reduced the ECP activity of the JEV genome in bacteria. The growth kinetics of recombinant viruses derived from RNA-launched DENV2 and JEV infectious cDNAs displayed patterns similar to those of the parental viruses. These results support a novel methodology for constructing flavivirus infectious cDNAs, which will facilitate research in virology, viral pathogenesis and vaccine development of flaviviruses and other RNA viruses.
Collapse
Affiliation(s)
- Szu-Yuan Pu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 350, Taiwan, R.O.C
| | - Ren-Huang Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 350, Taiwan, R.O.C
| | - Ming-Han Tsai
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 350, Taiwan, R.O.C
| | - Chi-Chen Yang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 350, Taiwan, R.O.C
| | - Chung-Ming Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 350, Taiwan, R.O.C
| | - Andrew Yueh
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 350, Taiwan, R.O.C
| |
Collapse
|
9
|
Successful propagation of flavivirus infectious cDNAs by a novel method to reduce the cryptic bacterial promoter activity of virus genomes. J Virol 2011; 85:2927-41. [PMID: 21228244 DOI: 10.1128/jvi.01986-10] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reverse genetics is a powerful tool to study single-stranded RNA viruses. Despite tremendous efforts having been made to improve the methodology for constructing flavivirus cDNAs, the cause of toxicity of flavivirus cDNAs in bacteria remains unknown. Here we performed mutational analysis studies to identify Escherichia coli promoter (ECP) sequences within nucleotides (nt) 1 to 3000 of the dengue virus type 2 (DENV2) and Japanese encephalitis virus (JEV) genomes. Eight and four active ECPs were demonstrated within nt 1 to 3000 of the DENV2 and JEV genomes, respectively, using fusion constructs containing DENV2 or JEV segments and empty vector reporter gene Renilla luciferase. Full-length DENV2 and JEV cDNAs were obtained by inserting mutations reducing their ECP activity in bacteria without altering amino acid sequences. A severe cytopathic effect occurred when BHK21 cells were transfected with in vitro-transcribed RNAs from either a DENV2 cDNA clone with multiple silent mutations within the prM-E-NS1 region of dengue genome or a JEV cDNA clone with an A-to-C mutation at nt 90 of the JEV genome. The virions derived from the DENV2 or JEV cDNA clone exhibited infectivities similar to those of their parental viruses in C6/36 and BHK21 cells. A cis-acting element essential for virus replication was revealed by introducing silent mutations into the central portion (nt 160 to 243) of the core gene of DENV2 infectious cDNA or a subgenomic DENV2 replicon clone. This novel strategy of constructing DENV2 and JEV infectious clones could be applied to other flaviviruses or pathogenic RNA viruses to facilitate research in virology, viral pathogenesis, and vaccine development.
Collapse
|
10
|
Abstract
The increased spread of dengue fever and its more severe form, dengue hemorrhagic fever, have made the study of the mosquito-borne dengue viruses that cause these diseases a public health priority. Little is known about how or why the four different (serotypes 1-4) dengue viruses cause pathology in humans only, and there have been no animal models of disease to date. Therefore, there are no vaccines or antivirals to prevent or treat infection and mortality rates of dengue hemorrhagic fever patients can reach up to 20%. Cases occur mainly in tropical zones within developing countries worldwide, and control measures have been limited to the elimination of the mosquito vectors. Thus, it is imperative that we develop new methods of studying dengue virus pathogenicity. This article presents new approaches that may help us to understand dengue virus virulence and the specific mechanisms that lead to dengue fever and severe disease.
Collapse
Affiliation(s)
- Rebeca Rico-Hesse
- Department of Virology & Immunology, Southwest Foundation for Biomedical Research, 7620 NW Loop 410, San Antonio, TX 78245, USA
| |
Collapse
|