1
|
Vellingiri B, Balasubramani K, Iyer M, Raj N, Elangovan A, Song K, Yeo HC, Jayakumar N, Kinoshita M, Thangarasu R, Narayanasamy A, Dayem AA, Prajapati VK, Gopalakrishnan AV, Cho SG. Role of Telomeres and Telomerase in Parkinson's Disease-A New Theranostics? Adv Biol (Weinh) 2023; 7:e2300097. [PMID: 37590305 DOI: 10.1002/adbi.202300097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/19/2023] [Indexed: 08/19/2023]
Abstract
Parkinson's disease (PD) is a complex condition that is significantly influenced by oxidative stress and inflammation. It is also suggested that telomere shortening (TS) is regulated by oxidative stress which leads to various diseases including age-related neurodegenerative diseases like PD. Thus, it is anticipated that PD would result in TS of peripheral blood mononuclear cells (PBMCs). Telomeres protect the ends of eukaryotic chromosomes preserving them against fusion and destruction. The TS is a normal process because DNA polymerase is unable to replicate the linear ends of the DNA due to end replication complications and telomerase activity in various cell types counteracts this process. PD is usually observed in the aged population and progresses over time therefore, disparities among telomere length in PBMCs of PD patients are recorded and it is still a question whether it has any useful role. Here, the likelihood of telomere attrition in PD and its implications concerning microglia activation, ageing, oxidative stress, and the significance of telomerase activators are addressed. Also, the possibility of telomeres and telomerase as a diagnostic and therapeutic biomarker in PD is discussed.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Kiruthika Balasubramani
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, Tamil Nadu, 641021, India
| | - Neethu Raj
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Ajay Elangovan
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Kwonwoo Song
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Han-Cheol Yeo
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Namitha Jayakumar
- Department of Biotechnology, Sri Ramakrishna College of Arts and Science, Coimbatore, Tamil Nadu, 641006, India
| | - Masako Kinoshita
- Department of Neurology, National Hospital Organization Utano National Hospital, Ondoyama-Cho, Narutaki, Ukyo-Ku, Kyoto, 616-8255, Japan
| | - Ravimanickam Thangarasu
- Department of Zoology, School of Science, Tamil Nadu Open University, Saidapet, Chennai, 600015, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
2
|
Ortega-Vázquez A, Sánchez-Badajos S, Ramírez-García MÁ, Alvarez-Luquín D, López-López M, Adalid-Peralta LV, Monroy-Jaramillo N. Longitudinal Changes in Mitochondrial DNA Copy Number and Telomere Length in Patients with Parkinson's Disease. Genes (Basel) 2023; 14:1913. [PMID: 37895262 PMCID: PMC10606744 DOI: 10.3390/genes14101913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Parkinson's disease (PD) pathophysiology includes mitochondrial dysfunction, neuroinflammation, and aging as its biggest risk factors. Mitochondrial DNA copy number (mtDNA-CN) and telomere length (TL) are biological aging markers with inconclusive results regarding their association with PD. A case-control study was used to measure TL and mtDNA-CN using qPCR in PBMCs. PD patients were naive at baseline (T0) and followed-up at one (T1) and two (T2) years after the dopaminergic treatment (DRT). Plasmatic cytokines were determined by ELISA in all participants, along with clinical parameters of patients at T0. While TL was shorter in patients vs. controls at all time points evaluated (p < 0.01), mtDNA-CN showed no differences. An increase in mtDNA-CN and TL was observed in treated patients vs. naive ones (p < 0.001). Our statistical model analyzed both aging markers with covariates, showing a strong correlation between them (r = 0.57, p < 0.01), and IL-17A levels positively correlating with mtDNA-CN only in untreated patients (r = 0.45, p < 0.05). TL and mtDNA-CN could be useful markers for monitoring inflammation progression or treatment response in PD. DRT might modulate TL and mtDNA-CN, reflecting a compensatory mechanism to counteract mitochondrial dysfunction in PD, but this needs further investigation.
Collapse
Affiliation(s)
- Alberto Ortega-Vázquez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City 04960, Mexico; (A.O.-V.); (M.L.-L.)
| | - Salvador Sánchez-Badajos
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City 04960, Mexico;
| | | | - Diana Alvarez-Luquín
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular UNAM en el Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico; (D.A.-L.); (L.V.A.-P.)
| | - Marisol López-López
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City 04960, Mexico; (A.O.-V.); (M.L.-L.)
| | - Laura Virginia Adalid-Peralta
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular UNAM en el Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico; (D.A.-L.); (L.V.A.-P.)
| | - Nancy Monroy-Jaramillo
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico;
| |
Collapse
|
3
|
Ren Q, Zhang G, Dong C, Li Z, Zhou D, Huang L, Li W, Huang G, Yan J. Parental Folate Deficiency Inhibits Proliferation and Increases Apoptosis of Neural Stem Cells in Rat Offspring: Aggravating Telomere Attrition as a Potential Mechanism. Nutrients 2023; 15:2843. [PMID: 37447170 DOI: 10.3390/nu15132843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The effect of maternal folate status on the fetal central nervous system (CNS) is well recognized, while evidence is emerging that such an association also exists between fathers and offspring. The biological functions of telomeres and telomerase are also related to neural cell proliferation and apoptosis. The study aimed to investigate the effect of parental folate deficiency on the proliferation and apoptosis of neural stem cells (NSCs) in neonatal offspring and the role of telomeres in this effect. In this study, rats were divided into four groups: maternal folate-deficient and paternal folate-deficient diet (D-D) group; maternal folate-deficient and paternal folate-normal diet (D-N) group; maternal folate-normal and paternal folate-deficient diet (N-D) group; and the maternal folate-normal and paternal folate-normal diet (N-N) group. The offspring were sacrificed at postnatal day 0 (PND0), and NSCs were cultured from the hippocampus and striatum tissues of offspring for future assay. The results revealed that parental folate deficiency decreased folate levels, increased homocysteine (Hcy) levels of the offspring's brain tissue, inhibited proliferation, increased apoptosis, shortened telomere length, and aggravated telomere attrition of offspring NSCs in vivo and in vitro. In vitro experiments further showed that offspring NSCs telomerase activity was inhibited due to parental folate deficiency. In conclusion, parental folate deficiency inhibited the proliferation and increased apoptosis of offspring NSCs, maternal folate deficiency had more adverse effects than paternal, and the mechanisms may involve the telomere attrition of NSCs.
Collapse
Affiliation(s)
- Qinghan Ren
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Guoquan Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Cuixia Dong
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Dezheng Zhou
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Li Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Jing Yan
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
- Department of Social Medicine and Health Administration, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
4
|
Asghar M, Odeh A, Fattahi AJ, Henriksson AE, Miglar A, Khosousi S, Svenningsson P. Mitochondrial biogenesis, telomere length and cellular senescence in Parkinson's disease and Lewy body dementia. Sci Rep 2022; 12:17578. [PMID: 36266468 PMCID: PMC9584960 DOI: 10.1038/s41598-022-22400-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 10/14/2022] [Indexed: 01/13/2023] Open
Abstract
Progressive age is the single major risk factor for neurodegenerative diseases. Cellular aging markers during Parkinson's disease (PD) have been implicated in previous studies, however the majority of studies have investigated the association of individual cellular aging hallmarks with PD but not jointly. Here, we have studied the association of PD with three aging hallmarks (telomere attrition, mitochondrial dysfunction, and cellular senescence) in blood and the brain tissue. Our results show that PD patients had 20% lower mitochondrial DNA copies but 26% longer telomeres in blood compared to controls. Moreover, telomere length in blood was positively correlated with medication (Levodopa Equivalent Daily Dose, LEDD) and disease duration. Similar results were found in brain tissue, where patients with Parkinson's disease (PD), Parkinson's disease dementia (PDD) and Dementia with Lewy Bodies (DLB) showed (46-95%) depleted mtDNA copies, but (7-9%) longer telomeres compared to controls. In addition, patients had lower mitochondrial biogenesis (PGC-1α and PGC-1β) and higher load of a cellular senescence marker in postmortem prefrontal cortex tissue, with DLB showing the highest effect among the patient groups. Our results suggest that mitochondrial dysfunction (copy number and biogenesis) in blood might be a valuable marker to assess the risk of PD. However, further studies with larger sample size are needed to evaluate these findings.
Collapse
Affiliation(s)
- Muhammad Asghar
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Lund, Sweden ,grid.465198.7Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Solna, Sweden
| | - Amani Odeh
- grid.465198.7Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Solna, Sweden
| | - Ahmad Jouni Fattahi
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Alexandra Edwards Henriksson
- grid.465198.7Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Solna, Sweden
| | - Aurelie Miglar
- grid.465198.7Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Solna, Sweden
| | - Shervin Khosousi
- grid.465198.7Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden ,grid.13097.3c0000 0001 2322 6764Basal and Clinical Neuroscience, Institute of Psychiatry, King’s College London, Psychology & Neuroscience, London, UK
| | - Per Svenningsson
- grid.465198.7Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden ,grid.13097.3c0000 0001 2322 6764Basal and Clinical Neuroscience, Institute of Psychiatry, King’s College London, Psychology & Neuroscience, London, UK
| |
Collapse
|
5
|
Bevelacqua JJ, Welsh J, Mortazavi SAR, Keshavarz M, Mortazavi SMJ. Space Medicine: Why Do Recently Published Papers about Telomere Length Alterations Increase our Uncertainty Rather than Reduce it? J Biomed Phys Eng 2021; 11:103-108. [PMID: 33564645 PMCID: PMC7859374 DOI: 10.31661/jbpe.v0i0.2005-1115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022]
Abstract
There is a growing interest in examining alterations in telomere length as a reliable biomarker of general health, as well as a marker for predicting later morbidity and mortality. Substantial evidence shows that telomere length is associated with aging; telomere shortening acts as a "counting mechanism" that drives replicative senescence by limiting the mitotic potential of normal (but not malignant) cells. In this Correspondence, we attempt to answer the question of why recently published papers about telomere length alterations increase our uncertainty rather than reduce it. This discussion includes three major research areas regarding telomere length: environmental stressors, aging, and life span. Our review suggests that activation of telomerase activity due to stressors in space might be a double-edged sword with both favorable and unfavorable consequences. The selection of an effect's consequence must clearly elucidate the experimental conditions as well as associated stressors. In this Correspondence, we attempt to answer the question of why recently published papers about telomere length alterations increase our uncertainty rather than reduce it. The selection of an effect's consequence must clearly elucidate the experimental conditions as well as associated stressors. Both positive and negative consequences must be clearly addressed in order to bolster the conclusions, as well as identify future research directions.
Collapse
Affiliation(s)
- J J Bevelacqua
- PhD, Bevelacqua Resources, Richland, Washington 99352, United States
| | - J Welsh
- MD, PhD, Loyola University Chicago, Edward Hines Jr., VA Hospital, Stritch School of Medicine, Department of Radiation Oncology, Maywood, IL 60153 USA
| | - S A R Mortazavi
- MD, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Keshavarz
- MSc, Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S M J Mortazavi
- PhD, Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Potential roles of telomeres and telomerase in neurodegenerative diseases. Int J Biol Macromol 2020; 163:1060-1078. [DOI: 10.1016/j.ijbiomac.2020.07.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/23/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
|
7
|
Nemirovich-Danchenko NM, Khodanovich MY. Telomerase Gene Editing in the Neural Stem Cells in vivo as a Possible New Approach against Brain Aging. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420040092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Gao K, Wei C, Zhu J, Wang X, Chen G, Luo Y, Zhang D, Yue W, Yu H. Exploring the Causal Pathway From Telomere Length to Alzheimer's Disease: An Update Mendelian Randomization Study. Front Psychiatry 2019; 10:843. [PMID: 31803085 PMCID: PMC6873744 DOI: 10.3389/fpsyt.2019.00843] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
Increasing evidence shows that telomere length shortening is associated with the risk for Alzheimer's disease (AD), pointing to a potential modifiable target for prevention. However, the causality of this association is still not clear. To investigate the causal relationship between telomere length and AD, we use two-sample Mendelian randomization (MR) to assess potential causal inference. We used summary-level data for telomere length (9,190 participants) and AD (71,880 cases and 383,378 controls). We performed two-sample MR analysis with single nucleotide polymorphisms previously identified to be associated with telomere length. The MR analyses were conducted using the inverse-variance-weighted method and complemented with the maximum likelihood, weighted median, weighted mode approaches. MR evidence suggested that shorter telomere length was causally associated with a higher risk for AD (inverse-variance weighted estimate of odds ratio (OR): 1.03 per SD decrease of telomere length, P=1.21×10-2). The maximum likelihood, weighted median, weighted mode yielded a similar pattern of effects. The results were similar in sensitivity analyses. Using genetic instruments identified from large-scale genome-wide association study, robust evidence supports a causal role of telomere length shortening with increased risk of AD.
Collapse
Affiliation(s)
- Kai Gao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Ministry of Health, Peking University Sixth Hospital (Institute of Mental Health), Peking University, Beijing, China
| | - Chen Wei
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, China
| | - Jin Zhu
- Department of Psychiatry, Jining Medical University, Jining, China
| | - Xin Wang
- Department of Psychiatry, Jining Medical University, Jining, China
| | - Guoqing Chen
- Department of Psychiatry, Jining Medical University, Jining, China
| | - Yangyang Luo
- Department of Psychiatry, Jining Medical University, Jining, China
| | - Dai Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Ministry of Health, Peking University Sixth Hospital (Institute of Mental Health), Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Weihua Yue
- NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Ministry of Health, Peking University Sixth Hospital (Institute of Mental Health), Peking University, Beijing, China
| | - Hao Yu
- Department of Psychiatry, Jining Medical University, Jining, China
| |
Collapse
|