1
|
Wang MH, Fang H, Xie C. Advanced glycation end products in gastric cancer: A promising future. World J Clin Oncol 2024; 15:1117-1121. [PMID: 39351465 PMCID: PMC11438846 DOI: 10.5306/wjco.v15.i9.1117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/19/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
In this editorial, we delve into the article and offer valuable insights into a crucial aspect of gastric cancer aetiology. Gastric cancer is a malignancy emanating from the epithelial lining of the gastric mucosa and one of the most prevalent forms of cancer worldwide. The development of gastric cancer is associated with multiple risk factors, including Helicobacter pylori infection, advanced age, a diet rich in salt, and suboptimal eating patterns. Despite notable reductions in morbidity and mortality rates, gastric cancer remains a formidable public health concern, impacting patients' lives. Advanced glycation end products (AGEs) are complex compounds arising from nonenzymatic reactions within living organisms, the accumulation of which is implicated in cellular and tissue damage; thus, the levels are AGEs are correlated with the risk of diverse diseases. The investigation of AGEs is of paramount importance for the treatment of gastric cancer and can provide pivotal insights into disease pathogenesis and preventive and therapeutic strategies. The reduction of AGEs levels and suppression of their accumulation are promising avenues for mitigating the risk of gastric cancer. This approach underscores the need for further research aimed at identifying innovative interventions that can effectively lower the incidence and mortality rates of this malignancy.
Collapse
Affiliation(s)
- Meng-Hui Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, The Jiangxi Medical College, The Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hui Fang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, The Jiangxi Medical College, The Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, The Jiangxi Medical College, The Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
2
|
Khan MI, Ashfaq F, Alsayegh AA, Hamouda A, Khatoon F, Altamimi TN, Alhodieb FS, Beg MMA. Advanced glycation end product signaling and metabolic complications: Dietary approach. World J Diabetes 2023; 14:995-1012. [PMID: 37547584 PMCID: PMC10401445 DOI: 10.4239/wjd.v14.i7.995] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
Advanced glycation end products (AGEs) are a heterogeneous collection of compounds formed during industrial processing and home cooking through a sequence of nonenzymatic glycation reactions. The modern western diet is full of heat-treated foods that contribute to AGE intake. Foods high in AGEs in the contemporary diet include processed cereal products. Due to industrialization and marketing strategies, restaurant meals are modified rather than being traditionally or conventionally cooked. Fried, grilled, baked, and boiled foods have the greatest AGE levels. Higher AGE-content foods include dry nuts, roasted walnuts, sunflower seeds, fried chicken, bacon, and beef. Animal proteins and processed plant foods contain furosine, acrylamide, heterocyclic amines, and 5-hydroxymethylfurfural. Furosine (2-furoil-methyl-lysine) is an amino acid found in cooked meat products and other processed foods. High concentrations of carboxymethyl-lysine, carboxyethyl-lysine, and methylglyoxal-O are found in heat-treated nonvegetarian foods, peanut butter, and cereal items. Increased plasma levels of AGEs, which are harmful chemicals that lead to age-related diseases and physiological aging, diabetes, and autoimmune/inflammatory rheumatic diseases such as systemic lupus erythematosus and rheumatoid arthritis. AGEs in the pathophysiology of metabolic diseases have been linked to individuals with diabetes mellitus who have peripheral nerves with high amounts of AGEs and diabetes has been linked to increased myelin glycation. Insulin resistance and hyperglycemia can impact numerous human tissues and organs, leading to long-term difficulties in a number of systems and organs, including the cardiovascular system. Plasma AGE levels are linked to all-cause mortality in individuals with diabetes who have fatal or nonfatal coronary artery disease, such as ventricular dysfunction. High levels of tissue AGEs are independently associated with cardiac systolic dysfunction in diabetic patients with heart failure compared with diabetic patients without heart failure. It is widely recognized that AGEs and oxidative stress play a key role in the cardiovascular complications of diabetes because they both influence and are impacted by oxidative stress. All chronic illnesses involve protein, lipid, or nucleic acid modifications including crosslinked and nondegradable aggregates known as AGEs. Endogenous AGE formation or dietary AGE uptake can result in additional protein modifications and stimulation of several inflammatory signaling pathways. Many of these systems, however, require additional explanation because they are not entirely obvious. This review summarizes the current evidence regarding dietary sources of AGEs and metabolism-related complications associated with AGEs.
Collapse
Affiliation(s)
- Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Fauzia Ashfaq
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Abdulrahman A Alsayegh
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Alshaimaa Hamouda
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Fahmida Khatoon
- Department of Biochemistry, College of Medicine, University of Hail, Hail 2240, Saudi Arabia
| | - Tahani Nasser Altamimi
- Department of Family and Community Medicine, College of Medicine, University of Hail, Hail 2240, Saudi Arabia
| | - Fahad Saad Alhodieb
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | | |
Collapse
|
3
|
Garza-Campos A, Prieto-Correa JR, Domínguez-Rosales JA, Hernández-Nazará ZH. Implications of receptor for advanced glycation end products for progression from obesity to diabetes and from diabetes to cancer. World J Diabetes 2023; 14:977-994. [PMID: 37547586 PMCID: PMC10401444 DOI: 10.4239/wjd.v14.i7.977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 07/12/2023] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are chronic pathologies with a high incidence worldwide. They share some pathological mechanisms, including hyperinsulinemia, the production and release of hormones, and hyperglycemia. The above, over time, affects other systems of the human body by causing tissue hypoxia, low-grade inflammation, and oxidative stress, which lay the pathophysiological groundwork for cancer. The leading causes of death globally are T2DM and cancer. Other main alterations of this pathological triad include the accumulation of advanced glycation end products and the release of endogenous alarmins due to cell death (i.e., damage-associated molecular patterns) such as the intracellular proteins high-mobility group box protein 1 and protein S100 that bind to the receptor for advanced glycation products (RAGE) - a multiligand receptor involved in inflammatory and metabolic and neoplastic processes. This review analyzes the latest advanced reports on the role of RAGE in the development of obesity, T2DM, and cancer, with an aim to understand the intracellular signaling mechanisms linked with cancer initiation. This review also explores inflammation, oxidative stress, hypoxia, cellular senescence, RAGE ligands, tumor microenvironment changes, and the “cancer hallmarks” of the leading tumors associated with T2DM. The assimilation of this information could aid in the development of diagnostic and therapeutic approaches to lower the morbidity and mortality associated with these diseases.
Collapse
Affiliation(s)
- Andrea Garza-Campos
- Programa de Doctorado en Ciencias en Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Roberto Prieto-Correa
- Programa de Doctorado en Ciencias en Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Alfredo Domínguez-Rosales
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Zamira Helena Hernández-Nazará
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
4
|
Deo P, Dhillon VS, Thomas P, Fenech M. Oleic Acid Status Positively Correlates with the Soluble Receptor for Advanced Glycation End-Products (sRAGE) in Healthy Adults Who Are Homozygous for G Allele of RAGE G82S Polymorphism. Cells 2023; 12:1662. [PMID: 37371132 DOI: 10.3390/cells12121662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The soluble form of receptor for advanced glycation end products (sRAGE) have been implicated in the prevention of numerous pathologic states, and highlights as an attractive therapeutic target. Because diets rich in monounsaturated fatty acids (MUFA) reduce postprandial oxidative stress and inflammation that is related to better health during aging, we investigated the association between red blood cell (RBC) fatty acids with circulatory AGE biomarkers and further stratified this correlation based on GG and GA + AA genotype. METHODS A total of 172 healthy participants (median age = 53.74 ± 0.61 years) were recruited for the study. RBC fatty acid was analysed using gas chromatography and sRAGE was measured using a commercial ELISA kit. RESULTS The result showed a non-significant correlation between total MUFA with sRAGE however oleic acid (C18:1) exhibited a positive correlation (r = 0.178, p = 0.01) that remained statistically significant (β = 0.178, p = 0.02) after a stepwise multivariate regression analysis after adjusting for age, BMI and gender. In a univariate analysis, a positive significant correlation between C18:1 and sRAGE in GG genotype (r = 0.169, p = 0.02) and a non-significant correlation with GA + AA genotype (r = 0.192, p = 0.21) was evident. When C18:1 was stratified, a significant difference was observed for oleic acid and G82S polymorphism: low C18:1/GA + AA versus high C18:1/GG (p = 0.015) and high C18:1/GA + AA versus high C18:1/GG (p = 0.02). CONCLUSION Our study suggests that increased levels of C18:1 may be a potential therapeutic approach in increasing sRAGE in those with GG genotype and play a role in modulating AGE metabolism.
Collapse
Affiliation(s)
- Permal Deo
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Varinderpal S Dhillon
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Philip Thomas
- CSIRO Health and Biosecurity, Adelaide 5000, Australia
| | - Michael Fenech
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
- Genome Health Foundation, North Brighton 5048, Australia
| |
Collapse
|
5
|
Scavello F, Piacentini L, Castiglione S, Zeni F, Macrì F, Casaburo M, Vinci MC, Colombo GI, Raucci A. Effects of RAGE Deletion on the Cardiac Transcriptome during Aging. Int J Mol Sci 2022; 23:ijms231911130. [PMID: 36232442 PMCID: PMC9569842 DOI: 10.3390/ijms231911130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
Cardiac aging is characterized by increased cardiomyocyte hypertrophy, myocardial stiffness, and fibrosis, which enhance cardiovascular risk. The receptor for advanced glycation end-products (RAGE) is involved in several age-related diseases. RAGE knockout (Rage−/−) mice show an acceleration of cardiac dimension changes and interstitial fibrosis with aging. This study identifies the age-associated cardiac gene expression signature induced by RAGE deletion. We analyzed the left ventricle transcriptome of 2.5-(Young), 12-(Middle age, MA), and 21-(Old) months-old female Rage−/− and C57BL/6N (WT) mice. By comparing Young, MA, and Old Rage−/− versus age-matched WT mice, we identified 122, 192, and 12 differently expressed genes, respectively. Functional inference analysis showed that RAGE deletion is associated with: (i) down-regulation of genes involved in antigen processing and presentation of exogenous antigen, adaptive immune response, and cellular responses to interferon beta and gamma in Young animals; (ii) up-regulation of genes related to fatty acid oxidation, cardiac structure remodeling and cellular response to hypoxia in MA mice; (iii) up-regulation of few genes belonging to complement activation and triglyceride biosynthetic process in Old animals. Our findings show that the age-dependent cardiac phenotype of Rage−/− mice is associated with alterations of genes related to adaptive immunity and cardiac stress pathways.
Collapse
Affiliation(s)
- Francesco Scavello
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Luca Piacentini
- Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Stefania Castiglione
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Filippo Zeni
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Federica Macrì
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Manuel Casaburo
- Animal Facility, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Maria Cristina Vinci
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Gualtiero I. Colombo
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Correspondence: (G.I.C.); (A.R.); Tel.: +39-025-800-2464 (G.I.C.); +39-025-800-2802 (A.R.); Fax: +39-025-800-2342 (G.I.C. & A.R.)
| | - Angela Raucci
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Animal Facility, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Correspondence: (G.I.C.); (A.R.); Tel.: +39-025-800-2464 (G.I.C.); +39-025-800-2802 (A.R.); Fax: +39-025-800-2342 (G.I.C. & A.R.)
| |
Collapse
|
6
|
Advanced Glycation End Products (AGEs) and Chronic Kidney Disease: Does the Modern Diet AGE the Kidney? Nutrients 2022; 14:nu14132675. [PMID: 35807857 PMCID: PMC9268915 DOI: 10.3390/nu14132675] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/13/2022] Open
Abstract
Since the 1980s, chronic kidney disease (CKD) affecting all ages has increased by almost 25%. This increase may be partially attributable to lifestyle changes and increased global consumption of a “western” diet, which is typically energy dense, low in fruits and vegetables, and high in animal protein and ultra-processed foods. These modern food trends have led to an increase in the consumption of advanced glycation end products (AGEs) in conjunction with increased metabolic dysfunction, obesity and diabetes, which facilitates production of endogenous AGEs within the body. When in excess, AGEs can be pathological via both receptor-mediated and non-receptor-mediated pathways. The kidney, as a major site for AGE clearance, is particularly vulnerable to AGE-mediated damage and increases in circulating AGEs align with risk of CKD and all-cause mortality. Furthermore, individuals with significant loss of renal function show increased AGE burden, particularly with uraemia, and there is some evidence that AGE lowering via diet or pharmacological inhibition may be beneficial for CKD. This review discusses the pathways that drive AGE formation and regulation within the body. This includes AGE receptor interactions and pathways of AGE-mediated pathology with a focus on the contribution of diet on endogenous AGE production and dietary AGE consumption to these processes. We then analyse the contribution of AGEs to kidney disease, the evidence for dietary AGEs and endogenously produced AGEs in driving pathogenesis in diabetic and non-diabetic kidney disease and the potential for AGE targeted therapies in kidney disease.
Collapse
|
7
|
Sabbatinelli J, Castiglione S, Macrì F, Giuliani A, Ramini D, Vinci MC, Tortato E, Bonfigli AR, Olivieri F, Raucci A. Circulating levels of AGEs and soluble RAGE isoforms are associated with all-cause mortality and development of cardiovascular complications in type 2 diabetes: a retrospective cohort study. Cardiovasc Diabetol 2022; 21:95. [PMID: 35668468 PMCID: PMC9169316 DOI: 10.1186/s12933-022-01535-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Advanced glycation end-products (AGEs) and their interaction with the receptor for advanced glycation end-products (RAGE) play a pivotal role in the development and progression of type 2 diabetes. In this retrospective cohort study, we explored the association of circulating levels of soluble RAGE (sRAGE) isoforms, i.e., endogenous secretory esRAGE and cleaved cRAGE, AGEs and their respective ratios with 15-year all-cause mortality in type 2 diabetes. METHODS Baseline AGEs and sRAGE isoforms concentration were measured by ELISA in 362 patients with type 2 diabetes and in 125 age- and gender-matched healthy control subjects (CTR). Independent predictors of mortality were determined using Cox proportional-hazards models and used to build and validate a nomogram for all-cause mortality prediction in type 2 diabetes. RESULTS AGEs, total sRAGE, cRAGE and the AGEs/sRAGE and AGEs/esRAGE ratios were significantly increased in patients with type 2 diabetes compared to CTR (p < 0.001). In CTR subjects, but not in type 2 diabetes patients, a significant negative correlation between cRAGE and age was confirmed (p = 0.003), whereas the AGEs/sRAGE (p = 0.032) and AGEs/cRAGE (p = 0.006) ratios were positively associated with age. At an average follow-up of 15 years (4,982 person-years), 130 deaths were observed. The increase in the AGEs/cRAGE ratio was accompanied by a higher risk of all-cause mortality in patients with type 2 diabetes (HR per each SD increment = 1.30, 95% CI 1.15-1.47; p < 0.001). Moreover, sRAGE was associated with the development of major adverse cardiovascular events (MACE) in type 2 diabetes patients without previous MACE (OR for each SD increase: 1.48, 95% CI 1.11-1.89). A nomogram based on age, sex, HbA1c, systolic blood pressure, and the AGEs/cRAGE ratio was built to predict 5-, 10- and 15-year survival in type 2 diabetes. Patients were categorized into quartiles of the monogram scores and Kaplan-Meier survival curves confirmed the prognostic accuracy of the model (log-rank p = 6.5 × 10- 13). CONCLUSIONS The ratio between AGEs and the cRAGE isoform is predictive of 15-year survival in patients with type 2 diabetes. Our data support the assessment of circulating AGEs and soluble RAGE isoforms in patients with type 2 diabetes as predictors of MACE and all-cause mortality.
Collapse
Affiliation(s)
- Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
- Laboratory Medicine Unit, Azienda Ospedaliero Universitaria "Ospedali Riuniti", Ancona, Italy
| | - Stefania Castiglione
- Experimental Cardio-Oncology and Cardiovascular Aging Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Federica Macrì
- Experimental Cardio-Oncology and Cardiovascular Aging Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, 60126, Ancona, Italy.
| | - Deborah Ramini
- Clinical Laboratory and Molecular Diagnostic, IRCCS INRCA, Ancona, Italy
| | - Maria Cristina Vinci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Elena Tortato
- Metabolic Diseases and Diabetology Department, IRCCS INRCA, Ancona, Italy
| | | | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
- Clinical Laboratory and Molecular Diagnostic, IRCCS INRCA, Ancona, Italy
| | - Angela Raucci
- Experimental Cardio-Oncology and Cardiovascular Aging Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| |
Collapse
|
8
|
Kinscherf NA, Pehar M. Role and Therapeutic Potential of RAGE Signaling in Neurodegeneration. Curr Drug Targets 2022; 23:1191-1209. [PMID: 35702767 PMCID: PMC9589927 DOI: 10.2174/1389450123666220610171005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/29/2022] [Indexed: 01/03/2023]
Abstract
Activation of the receptor for advanced glycation end products (RAGE) has been shown to play an active role in the development of multiple neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Although originally identified as a receptor for advanced glycation end products, RAGE is a pattern recognition receptor able to bind multiple ligands. The final outcome of RAGE signaling is defined in a context and cell type specific manner and can exert both neurotoxic and neuroprotective functions. Contributing to the complexity of the RAGE signaling network, different RAGE isoforms with distinctive signaling capabilities have been described. Moreover, multiple RAGE ligands bind other receptors and RAGE antagonism can significantly affect their signaling. Here, we discuss the outcome of celltype specific RAGE signaling in neurodegenerative pathologies. In addition, we will review the different approaches that have been developed to target RAGE signaling and their therapeutic potential. A clear understanding of the outcome of RAGE signaling in a cell type- and disease-specific manner would contribute to advancing the development of new therapies targeting RAGE. The ability to counteract RAGE neurotoxic signaling while preserving its neuroprotective effects would be critical for the success of novel therapies targeting RAGE signaling.
Collapse
Affiliation(s)
- Noah Alexander Kinscherf
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Mariana Pehar
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, USA
| |
Collapse
|