1
|
Hassan GS, Helal MB, Ibrahim HF. Immunohistochemical expression of estrogen receptor alpha in the maxillary sinus, pulp, and periodontal ligament of adjacent teeth in late pregnancy in rats. Odontology 2023; 111:608-617. [PMID: 36434465 PMCID: PMC10238294 DOI: 10.1007/s10266-022-00770-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
This study aimed to assess the histological changes in the maxillary sinus and its adjacent dental tissues as pulp and periodontal ligament during pregnancy and investigate the role of estrogen hormone in these changes through the detection of estrogen receptors in these tissues. Sixteen adult female rats were used and were allocated into two groups: control non-pregnant (n = 8) and pregnant (n = 8). They were sacrificed and their heads were prepared for histological and immunohistochemical examination for estrogen receptor alpha. Our results revealed that pregnant rats revealed inflammatory changes in the sinus as thick epithelial lining, loss of cilia, swollen goblet cells, intraepithelial and interstitial edema. The lamina propria demonstrated considerable infiltration of inflammatory cells, glandular hyperplasia with vacuolar degeneration, and vascular congestion. Periodontal ligament and pulp revealed hyperemia and vascular congestion. Immunohistochemical examination of estrogen receptor alpha in the maxillary sinus and adjacent dental tissues (Periodontal ligament and pulp) in pregnant rats revealed a significant increase in its expression in all examined tissues. In conclusion, there was an increase in expression of ERα in the sinus mucosa and dental tissues during pregnancy together with slight inflammatory changes in these tissues. Hence, dentists should be aware of the effect of these changes on the pregnant women avoiding teeth extraction due to misdiagnosis of dental, periodontal or sinus pain after exclusion of true pathologies.
Collapse
Affiliation(s)
- Gihan S. Hassan
- Faculty of Dentistry, Tanta University, El-Giesh St., Tanta, Gharbia Egypt
| | - Mai B. Helal
- Faculty of Dentistry, Tanta University, El-Giesh St., Tanta, Gharbia Egypt
| | - H. F. Ibrahim
- Faculty of Dentistry, Tanta University, El-Giesh St., Tanta, Gharbia Egypt
| |
Collapse
|
2
|
Matrix Metalloproteinases System and Types of Fibrosis in Rat Heart during Late Pregnancy and Postpartum. ACTA ACUST UNITED AC 2019; 55:medicina55050199. [PMID: 31126142 PMCID: PMC6571987 DOI: 10.3390/medicina55050199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/28/2019] [Accepted: 05/20/2019] [Indexed: 11/25/2022]
Abstract
Background and objectives: Cardiac remodeling in pregnancy and postpartum is poorly understood. The aim of this study was to evaluate changes in cardiac fibrosis (pericardial, perivascular, and interstitial), as well as the expression of matrix metalloproteinases (MMP-1, MMP-2, and MMP-9) and their inhibitors (Tissue inhibitors of metalloproteinases, TIMP-1 and TIMP-4) during late pregnancy and postpartum in rat left ventricle. Materials and Methods: Female Sprague–Dawley rats were used for this study. Rats were divided three groups: non-pregnant, late pregnancy, and postpartum. The heart was weighed and cardiac fibrosis was studied by conventional histological procedures. The expression and transcript level of target proteins were evaluated using immunoblot techniques and quantitative PCR. Results: The experiments showed an increase of perivascular, pericardial, and interstitial fibrosis in heart during pregnancy and its reversion in postpartum. Moreover, in late pregnancy, MMP-1, MMP-2, and MMP-9 metalloproteinases were downregulated and TIMP-1 and TIMP-4 were upregulated in left ventricle. Conclusions: Our data suggest that the metalloproteinases system is involved in the cardiac extracellular matrix remodeling during pregnancy and its reversion in postpartum, this improves the knowledge of the adaptive cardiac remodeling in response to a blood volume overload present during pregnancy.
Collapse
|
3
|
Perrucci GL, Barbagallo VA, Corlianò M, Tosi D, Santoro R, Nigro P, Poggio P, Bulfamante G, Lombardi F, Pompilio G. Integrin ανβ5 in vitro inhibition limits pro-fibrotic response in cardiac fibroblasts of spontaneously hypertensive rats. J Transl Med 2018; 16:352. [PMID: 30541573 PMCID: PMC6292173 DOI: 10.1186/s12967-018-1730-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022] Open
Abstract
Background To date the TGF-β1 activation mediated by integrin ανβ5 during fibrosis is well-known. This process has been shown also in the heart, where cardiac fibroblasts (CF) differentiate into α-smooth muscle actin (α-SMA)-positive myofibroblasts (MyoFB). Here, we studied the effects on CF, isolated by spontaneously hypertensive rats (SHR), of integrin ανβ5 inhibition in MyoFB differentiation. Methods Staining and immunohistochemistry were performed on rat cardiac tissue. CF were isolated by enzymatic digestion from SHR (SHR-CF) and normotensive WKY (WKY-CF) rat hearts and then treated for in vitro evaluation. Results SHR heart tissues revealed a higher TGF-β1 expression vs. WKY samples. SHR-CF showed an enhanced SMAD2/3 activation and an up-regulated expression of α-SMA, a typical MyoFB marker, especially after TGF-β1 treatment. Immunostaining on cardiac tissues revealed a higher expression of integrin ανβ5 in SHR vs. WKY rat hearts. In vitro results confirmed the up-regulation of integrin ανβ5 expression in SHR-CF at basal condition and after TGF-β1 treatment, in comparison with WKY-CF. Inhibition of integrin ανβ5 by cilengitide treatment led a decreased expression of ανβ5, collagen I, and α-SMA in SHR-CF vs. WKY-CF, resulting in a diminished differentiation of CF into MyoFB. Taking together, results suggested that SHR-CF are more susceptible to TGF-β1, showing an up-regulated activation of SMAD2/3 signaling, and an increased ανβ5, α-SMA, and collagen I expression. Hypertension stimulus promoted an up-regulation of integrin ανβ5 on SHR cardiac tissue and its in vitro inhibition reverted pro-fibrotic events of SHR-CF. Conclusion Inhibition of integrin ανβ5 exerted by cilengitide strongly diminished SHR-CF differentiation into detrimental MyoFB. So, integrin ανβ5 might be considered a novel therapeutic target and cilengitide an effective pharmacological tool to limit the progression of hypertension-induced cardiac fibrosis. Electronic supplementary material The online version of this article (10.1186/s12967-018-1730-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gianluca Lorenzo Perrucci
- Unità di Biologia Vascolare e Medicina Rigenerativa, Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, via Festa del Perdono 7, Milan, Italy. .,Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy.
| | | | - Maria Corlianò
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Delfina Tosi
- Unità di Patologia, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Ospedale San Paolo, via Antonio di Rudinì 8, Milan, Italy
| | - Rosaria Santoro
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Patrizia Nigro
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Paolo Poggio
- Unità per lo Studio di Patologie Aortiche, Valvolari e Coronariche, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Gaetano Bulfamante
- Unità di Patologia, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Ospedale San Paolo, via Antonio di Rudinì 8, Milan, Italy
| | - Federico Lombardi
- Unità di Biologia Vascolare e Medicina Rigenerativa, Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, via Festa del Perdono 7, Milan, Italy.,Unità di Cardiologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, Milan, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, via Festa del Perdono 7, Milan, Italy.,Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| |
Collapse
|
4
|
Fusco N, Guerini-Rocco E, Augello C, Terrasi A, Ercoli G, Fumagalli C, Vacirca D, Braidotti P, Parafioriti A, Jaconi M, Runza L, Ananthanarayanan V, Pagni F, Bosari S, Barberis M, Ferrero S. Recurrent NAB2-STAT6 gene fusions and oestrogen receptor-α expression in pulmonary adenofibromas. Histopathology 2017; 70:906-917. [PMID: 28072477 DOI: 10.1111/his.13165] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/05/2017] [Accepted: 01/07/2017] [Indexed: 12/23/2022]
Abstract
AIMS Pulmonary adenofibromas are rare benign fibroepithelial tumours of the lung with unknown histogenesis and an indolent clinical behaviour. Their stroma resembles that of solitary fibrous tumours, whereas the glands are composed of respiratory epithelium organized in a phyllodes-like architecture. Differentiation of pulmonary adenofibromas from other more aggressive intrathoracic tumours is clinically relevant. However, their biology is unknown. Here, we sought to characterize pulmonary adenofibromas at a clinicopathological level and to define whether they could be underpinned by a highly recurrent somatic genetic alteration akin to tumours with similar morphology. METHODS AND RESULTS Seven pulmonary adenofibromas were subjected to immunohistochemical analysis for thyroid transcription factor 1 (TTF1), napsin A, cytokeratin 7, E-cadherin, CD99, CD34, CD31, STAT6, oestrogen receptor (ER), progesterone receptor, androgen receptor, bcl-2, and vimentin, as well as electron microscopy and capillary sequencing on microdissected samples to evaluate the presence of NAB2-STAT6 fusion genes and MED12 exon 2 mutations in their discrete components. A control group comprising pulmonary solitary fibrous tumours, pulmonary hamartomas and breast fibroadenomas was also analysed. We confirmed that the stromal elements of pulmonary adenofibromas pertain to the fibroblastic lineage, and show ER overexpression in 71% of cases, whereas the epithelium consists of TTF1-positive, E-cadherin positive bronchiolar elements. A highly recurrent NAB2-STAT6 fusion variant (exon 4-exon 2) was detected in the stroma but not in the epithelium. No MED12 mutations were identified. CONCLUSIONS Here, we demonstrate that pulmonary adenofibromas are neoplastic lesions harbouring the molecular hallmark of solitary fibrous tumours.
Collapse
Affiliation(s)
- Nicola Fusco
- Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | | | - Claudia Augello
- Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Organ Transplantation, University of Milan, Milan, Italy
| | - Andrea Terrasi
- Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Organ Transplantation, University of Milan, Milan, Italy
| | - Giulia Ercoli
- Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Davide Vacirca
- Division of Pathology, European Institute of Oncology, Milan, Italy
| | | | | | - Marta Jaconi
- School of Pathology, University of Milan, Milan, Italy
| | - Letterio Runza
- Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Fabio Pagni
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Silvano Bosari
- Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Organ Transplantation, University of Milan, Milan, Italy
| | - Massimo Barberis
- Division of Pathology, European Institute of Oncology, Milan, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|