1
|
Adams JM, Rege SV, Liu AT, Vu NV, Raina S, Kirsher DY, Nguyen AL, Harish R, Szoke B, Leone DP, Czirr E, Braithwaite S, Kerrisk Campbell M. Leukotriene A4 hydrolase inhibition improves age-related cognitive decline via modulation of synaptic function. SCIENCE ADVANCES 2023; 9:eadf8764. [PMID: 37976357 PMCID: PMC10656077 DOI: 10.1126/sciadv.adf8764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023]
Abstract
Leukotrienes, a class of inflammatory bioactive lipids, are well studied in the periphery, but less is known of their importance in the brain. We identified that the enzyme leukotriene A4 hydrolase (LTA4H) is expressed in healthy mouse neurons, and inhibition of LTA4H in aged mice improves hippocampal dependent memory. Single-cell nuclear RNA sequencing of hippocampal neurons after inhibition reveals major changes to genes important for synaptic organization, structure, and activity. We propose that LTA4H inhibition may act to improve cognition by directly inhibiting the enzymatic activity in neurons, leading to improved synaptic function. In addition, LTA4H plasma levels are increased in both aging and Alzheimer's disease and correlated with cognitive impairment. These results identify a role for LTA4H in the brain, and we propose that LTA4H inhibition may be a promising therapeutic strategy to treat cognitive decline in aging related diseases.
Collapse
Affiliation(s)
- Julia M. Adams
- Alkahest Inc., 125 Shoreway Road, Suite D, San Carlos, CA 94070, USA
| | - Sanket V. Rege
- Alkahest Inc., 125 Shoreway Road, Suite D, San Carlos, CA 94070, USA
| | | | - Ninh V. Vu
- Alkahest Inc., 125 Shoreway Road, Suite D, San Carlos, CA 94070, USA
| | - Sharda Raina
- Alkahest Inc., 125 Shoreway Road, Suite D, San Carlos, CA 94070, USA
| | | | - Amy L. Nguyen
- Alkahest Inc., 125 Shoreway Road, Suite D, San Carlos, CA 94070, USA
| | | | - Balazs Szoke
- Alkahest Inc., 125 Shoreway Road, Suite D, San Carlos, CA 94070, USA
| | - Dino P. Leone
- Alkahest Inc., 125 Shoreway Road, Suite D, San Carlos, CA 94070, USA
| | | | | | | |
Collapse
|
2
|
Ruffini N, Klingenberg S, Heese R, Schweiger S, Gerber S. The Big Picture of Neurodegeneration: A Meta Study to Extract the Essential Evidence on Neurodegenerative Diseases in a Network-Based Approach. Front Aging Neurosci 2022; 14:866886. [PMID: 35832065 PMCID: PMC9271745 DOI: 10.3389/fnagi.2022.866886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
The common features of all neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis (ALS), and Huntington's disease, are the accumulation of aggregated and misfolded proteins and the progressive loss of neurons, leading to cognitive decline and locomotive dysfunction. Still, they differ in their ultimate manifestation, the affected brain region, and the kind of proteinopathy. In the last decades, a vast number of processes have been described as associated with neurodegenerative diseases, making it increasingly harder to keep an overview of the big picture forming from all those data. In this meta-study, we analyzed genomic, transcriptomic, proteomic, and epigenomic data of the aforementioned diseases using the data of 234 studies in a network-based approach to study significant general coherences but also specific processes in individual diseases or omics levels. In the analysis part, we focus on only some of the emerging findings, but trust that the meta-study provided here will be a valuable resource for various other researchers focusing on specific processes or genes contributing to the development of neurodegeneration.
Collapse
Affiliation(s)
- Nicolas Ruffini
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Leibniz Institute for Resilience Research, Leibniz Association, Mainz, Germany
| | - Susanne Klingenberg
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Raoul Heese
- Fraunhofer Institute for Industrial Mathematics (ITWM), Kaiserslautern, Germany
| | - Susann Schweiger
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
3
|
Pan S, Liu X, Liu T, Zhao Z, Dai Y, Wang YY, Jia P, Liu F. Causal Inference of Genetic Variants and Genes in Amyotrophic Lateral Sclerosis. Front Genet 2022; 13:917142. [PMID: 35812739 PMCID: PMC9257137 DOI: 10.3389/fgene.2022.917142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal progressive multisystem disorder with limited therapeutic options. Although genome-wide association studies (GWASs) have revealed multiple ALS susceptibility loci, the exact identities of causal variants, genes, cell types, tissues, and their functional roles in the development of ALS remain largely unknown. Here, we reported a comprehensive post-GWAS analysis of the recent large ALS GWAS (n = 80,610), including functional mapping and annotation (FUMA), transcriptome-wide association study (TWAS), colocalization (COLOC), and summary data-based Mendelian randomization analyses (SMR) in extensive multi-omics datasets. Gene property analysis highlighted inhibitory neuron 6, oligodendrocytes, and GABAergic neurons (Gad1/Gad2) as functional cell types of ALS and confirmed cerebellum and cerebellar hemisphere as functional tissues of ALS. Functional annotation detected the presence of multiple deleterious variants at three loci (9p21.2, 12q13.3, and 12q14.2) and highlighted a list of SNPs that are potentially functional. TWAS, COLOC, and SMR identified 43 genes at 24 loci, including 23 novel genes and 10 novel loci, showing significant evidence of causality. Integrating multiple lines of evidence, we further proposed that rs2453555 at 9p21.2 and rs229243 at 14q12 functionally contribute to the development of ALS by regulating the expression of C9orf72 in pituitary and SCFD1 in skeletal muscle, respectively. Together, these results advance our understanding of the biological etiology of ALS, feed into new therapies, and provide a guide for subsequent functional experiments.
Collapse
Affiliation(s)
- Siyu Pan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinxuan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Tianzi Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yin-Ying Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- *Correspondence: Fan Liu, ; Peilin Jia,
| | - Fan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Fan Liu, ; Peilin Jia,
| |
Collapse
|
4
|
Zhang Y, Wang J, Liu X, Liu H. Exploring the role of RALYL in Alzheimer's disease reserve by network-based approaches. Alzheimers Res Ther 2020; 12:165. [PMID: 33298176 PMCID: PMC7724892 DOI: 10.1186/s13195-020-00733-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/23/2020] [Indexed: 11/14/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) reserve theory is based on specific individual characteristics that are associated with a higher resilience against neurodegeneration and its symptoms. A given degree of AD pathology may contribute to varying cognitive decline levels in different individuals. Although this phenomenon is attributed to reserve, the biological mechanisms that underpin it remain elusive, which restricts translational medicine research and treatment strategy development. METHODS Network-based approaches were integrated to identify AD reserve related genes. Then, AD brain transcriptomics data were clustered into co-expression modules, and a Bayesian network was developed using these modules plus AD reserve related phenotypes. The directed acyclic graph suggested that the module was strongly associated with AD reserve. The hub gene of the module of interest was filtered using the topological method. Validation was performed in the multi-AD brain transcriptomic dataset. RESULTS We revealed that the RALYL (RALY RNA Binding Protein-like) is the hub gene of the module which was highly associated with AD reserve related phenotypes. Pseudo-time projections of RALYL revealed the changes in relative expression drivers in the AD and control subjects over pseudo-time had distinct transcriptional states. Notably, the expression of RALYL decreased with the gradual progression of AD, and this corresponded to MMSE decline. Subjects with AD reserve exhibited significantly higher RALYL expression than those without AD reserve. CONCLUSION The present study suggests that RALYL may be associated with AD reserve, and it provides novel insights into the mechanisms of AD reserve and highlights the potential role of RALYL in this process.
Collapse
Affiliation(s)
- Yixuan Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
| | - Jiali Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
| | - Xiaoquan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
| | - Haochen Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
| |
Collapse
|
5
|
Ruffini N, Klingenberg S, Schweiger S, Gerber S. Common Factors in Neurodegeneration: A Meta-Study Revealing Shared Patterns on a Multi-Omics Scale. Cells 2020; 9:E2642. [PMID: 33302607 PMCID: PMC7764447 DOI: 10.3390/cells9122642] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are heterogeneous, progressive diseases with frequently overlapping symptoms characterized by a loss of neurons. Studies have suggested relations between neurodegenerative diseases for many years (e.g., regarding the aggregation of toxic proteins or triggering endogenous cell death pathways). We gathered publicly available genomic, transcriptomic, and proteomic data from 177 studies and more than one million patients to detect shared genetic patterns between the neurodegenerative diseases on three analyzed omics-layers. The results show a remarkably high number of shared differentially expressed genes between the transcriptomic and proteomic levels for all conditions, while showing a significant relation between genomic and proteomic data between AD and PD and AD and ALS. We identified a set of 139 genes being differentially expressed in several transcriptomic experiments of all four diseases. These 139 genes showed overrepresented gene ontology (GO) Terms involved in the development of neurodegeneration, such as response to heat and hypoxia, positive regulation of cytokines and angiogenesis, and RNA catabolic process. Furthermore, the four analyzed neurodegenerative diseases (NDDs) were clustered by their mean direction of regulation throughout all transcriptomic studies for this set of 139 genes, with the closest relation regarding this common gene set seen between AD and HD. GO-Term and pathway analysis of the proteomic overlap led to biological processes (BPs), related to protein folding and humoral immune response. Taken together, we could confirm the existence of many relations between Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis on transcriptomic and proteomic levels by analyzing the pathways and GO-Terms arising in these intersections. The significance of the connection and the striking relation of the results to processes leading to neurodegeneration between the transcriptomic and proteomic data for all four analyzed neurodegenerative diseases showed that exploring many studies simultaneously, including multiple omics-layers of different neurodegenerative diseases simultaneously, holds new relevant insights that do not emerge from analyzing these data separately. Furthermore, the results shed light on processes like the humoral immune response that have previously been described only for certain diseases. Our data therefore suggest human patients with neurodegenerative diseases should be addressed as complex biological systems by integrating multiple underlying data sources.
Collapse
Affiliation(s)
- Nicolas Ruffini
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (N.R.); (S.K.); (S.S.)
- Leibniz Institute for Resilience Research, Leibniz Association, Wallstraße 7, 55122 Mainz, Germany
| | - Susanne Klingenberg
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (N.R.); (S.K.); (S.S.)
| | - Susann Schweiger
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (N.R.); (S.K.); (S.S.)
| | - Susanne Gerber
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (N.R.); (S.K.); (S.S.)
| |
Collapse
|
6
|
Xiao L, Yuan Z, Jin S, Wang T, Huang S, Zeng P. Multiple-Tissue Integrative Transcriptome-Wide Association Studies Discovered New Genes Associated With Amyotrophic Lateral Sclerosis. Front Genet 2020; 11:587243. [PMID: 33329728 PMCID: PMC7714931 DOI: 10.3389/fgene.2020.587243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified multiple causal genes associated with amyotrophic lateral sclerosis (ALS); however, the genetic architecture of ALS remains completely unknown and a large number of causal genes have yet been discovered. To full such gap in part, we implemented an integrative analysis of transcriptome-wide association study (TWAS) for ALS to prioritize causal genes with summary statistics from 80,610 European individuals and employed 13 GTEx brain tissues as reference transcriptome panels. The summary-level TWAS analysis with single brain tissue was first undertaken and then a flexible p-value combination strategy, called summary data-based Cauchy Aggregation TWAS (SCAT), was proposed to pool association signals from single-tissue TWAS analysis while protecting against highly positive correlation among tests. Extensive simulations demonstrated SCAT can produce well-calibrated p-value for the control of type I error and was often much more powerful to identify association signals across various scenarios compared with single-tissue TWAS analysis. Using SCAT, we replicated three ALS-associated genes (i.e., ATXN3, SCFD1, and C9orf72) identified in previous GWASs and discovered additional five genes (i.e., SLC9A8, FAM66D, TRIP11, JUP, and RP11-529H20.6) which were not reported before. Furthermore, we discovered the five associations were largely driven by genes themselves and thus might be new genes which were likely related to the risk of ALS. However, further investigations are warranted to verify these results and untangle the pathophysiological function of the genes in developing ALS.
Collapse
Affiliation(s)
- Lishun Xiao
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, China
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Siyi Jin
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, China
| | - Ting Wang
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, China
| | - Shuiping Huang
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Yang B, Jiang H, Wang F, Li S, Wu C, Bao J, Zhu Y, Xu Z, Liu B, Ren H, Yang X. UNC13A variant rs12608932 is associated with increased risk of amyotrophic lateral sclerosis and reduced patient survival: a meta-analysis. Neurol Sci 2019; 40:2293-2302. [PMID: 31201598 DOI: 10.1007/s10072-019-03951-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease associated with both genetic and environmental risk factors. Previous studies trying to find an association between ALS and unc-13 homolog A (UNC13A) gene variants have shown inconsistent results. This study aimed to conduct a meta-analysis of the association between the C allele of rs12608932, a single-nucleotide polymorphism located in an intron of UNC13A, and risk of ALS and patient survival. METHODS PubMed, Web of Science, Embase, Chinese National Knowledge Infrastructure, Wanfang, and SinoMed databases were systematically searched for genome-wide association studies or case-control studies published up to January 2019 on the association between this variant in UNC13A and risk and/or prognosis of ALS. Data from eligible studies were extracted and analyzed. RESULTS The pooled data (28,072 patients with sporadic ALS and 56,545 controls) showed that rs12608932(C) was associated with an increased risk of ALS (OR = 1.13, 95%CI 1.07-1.20). Subgroup analysis revealed that rs12608932(C) increased the risk of sporadic ALS in non-Asian individuals, including those from the USA and Europe (OR 1.17, 95%CI 1.10-1.25, P < 0.000), but not in Japanese or Chinese subjects (OR 1.01, 95%CI 0.92-1.10, P = 0.85). The available data demonstrated that the CC genotype decreased the survival time of patients with ALS (OR 1.33, 95%CI 1.19-1.49, P < 0.001). CONCLUSION The present meta-analysis suggests that rs12608932(C) is associated with increased ALS susceptibility, especially in Caucasian and European subjects, and that the CC genotype of rs12608932 is associated with reduced ALS patient survival.
Collapse
Affiliation(s)
- Baiyuan Yang
- Department of Neurology, Seventh People's Hospital of Chengdu, Chengdu, 690041, Sichuan Province, People's Republic of China
| | - Haixia Jiang
- Department of Anesthesia, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, People's Republic of China
| | - Fang Wang
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, People's Republic of China
| | - Shimei Li
- Department of Anesthesia, Kunming Xishan District People's Hospital, Kunming, 650100, Yunnan Province, People's Republic of China
| | - Chongmin Wu
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, People's Republic of China
| | - Jianjian Bao
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, People's Republic of China
| | - Yongyun Zhu
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, People's Republic of China
| | - Zhong Xu
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, People's Republic of China
| | - Bin Liu
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, People's Republic of China
| | - Hui Ren
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, People's Republic of China
| | - Xinglong Yang
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, People's Republic of China.
| |
Collapse
|
8
|
Kumar S, Yadav N, Pandey S, Thelma BK. Advances in the discovery of genetic risk factors for complex forms of neurodegenerative disorders: contemporary approaches, success, challenges and prospects. J Genet 2018. [DOI: 10.1007/s12041-018-0953-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Chang HT. Biomarker discovery using dry-lab technologies and high-throughput screening. Biomark Med 2016; 10:559-61. [PMID: 27278686 DOI: 10.2217/bmm-2016-0111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Hao-Teng Chang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung City, Taiwan; Department of Computer Science & Information Engineering, Asia University, Taichung City, Taiwan
| |
Collapse
|