1
|
Khalil IR, Khechara MP, Kurusamy S, Armesilla AL, Gupta A, Mendrek B, Khalaf T, Scandola M, Focarete ML, Kowalczuk M, Radecka I. Poly-Gamma-Glutamic Acid (γ-PGA)-Based Encapsulation of Adenovirus to Evade Neutralizing Antibodies. Molecules 2018; 23:molecules23102565. [PMID: 30297641 PMCID: PMC6222443 DOI: 10.3390/molecules23102565] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
In recent years, there has been an increasing interest in oncolytic adenoviral vectors as an alternative anticancer therapy. The induction of an immune response can be considered as a major limitation of this kind of application. Significant research efforts have been focused on the development of biodegradable polymer poly-gamma-glutamic acid (γ-PGA)-based nanoparticles used as a vector for effective and safe anticancer therapy, owing to their controlled and sustained-release properties, low toxicity, as well as biocompatibility with tissue and cells. This study aimed to introduce a specific destructive and antibody blind polymer-coated viral vector into cancer cells using γ-PGA and chitosan (CH). Adenovirus was successfully encapsulated into the biopolymer particles with an encapsulation efficiency of 92% and particle size of 485 nm using the ionic gelation method. Therapeutic agents or nanoparticles (NPs) that carry therapeutics can be directed specifically to cancerous cells by decorating their surfaces using targeting ligands. Moreover, in vitro neutralizing antibody response against viral capsid proteins can be somewhat reduced by encapsulating adenovirus into γ-PGA-CH NPs, as only 3.1% of the encapsulated adenovirus was detected by anti-adenovirus antibodies in the presented work compared to naked adenoviruses. The results obtained and the unique characteristics of the polymer established in this research could provide a reference for the coating and controlled release of viral vectors used in anticancer therapy.
Collapse
Affiliation(s)
- Ibrahim R Khalil
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
- Department of Biology, College of Science, Tikrit University, Tikrit PO Box 42, Iraq.
| | - Martin P Khechara
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Sathishkumar Kurusamy
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Angel L Armesilla
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Abhishek Gupta
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Barbara Mendrek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland.
| | - Tamara Khalaf
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Mariastella Scandola
- Department of Chemistry 'G. Ciamician' and National Consortium of Materials Science and Technology (INSTM, Bologna RU), Alma Mater Studiorum⁻Università di Bologna Via Selmi 2, 40126 Bologna, Italy.
| | - Maria Letizia Focarete
- Department of Chemistry 'G. Ciamician' and National Consortium of Materials Science and Technology (INSTM, Bologna RU), Alma Mater Studiorum⁻Università di Bologna Via Selmi 2, 40126 Bologna, Italy.
| | - Marek Kowalczuk
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland.
| | - Iza Radecka
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| |
Collapse
|
2
|
Cockle JV, Scott KJ. What is oncolytic virotherapy? Arch Dis Child Educ Pract Ed 2018; 103:43-45. [PMID: 28588023 DOI: 10.1136/archdischild-2016-311922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/20/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Julia V Cockle
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK.,Yorkshire Regional Centre for Paediatric Oncology and Haematology, Leeds General Infirmary, Leeds, UK
| | - Karen J Scott
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| |
Collapse
|
3
|
Cockle JV, Brüning-Richardson A, Scott KJ, Thompson J, Kottke T, Morrison E, Ismail A, Carcaboso AM, Rose A, Selby P, Conner J, Picton S, Short S, Vile R, Melcher A, Ilett E. Oncolytic Herpes Simplex Virus Inhibits Pediatric Brain Tumor Migration and Invasion. Mol Ther Oncolytics 2017; 5:75-86. [PMID: 28547002 PMCID: PMC5435599 DOI: 10.1016/j.omto.2017.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 04/25/2017] [Indexed: 12/13/2022] Open
Abstract
Pediatric high-grade glioma (pHGG) and diffuse intrinsic pontine glioma (DIPG) are invasive tumors with poor survival. Oncolytic virotherapy, initially devised as a direct cytotoxic treatment, is now also known to act via immune-mediated mechanisms. Here we investigate a previously unreported mechanism of action: the inhibition of migration and invasion in pediatric brain tumors. We evaluated the effect of oncolytic herpes simplex virus 1716 (HSV1716) on the migration and invasion of pHGG and DIPG both in vitro using 2D (scratch assay, live cell imaging) and 3D (spheroid invasion in collagen) assays and in vivo using an orthotopic xenograft model of DIPG invasion. HSV1716 inhibited migration and invasion in pHGG and DIPG cell lines. pHGG cells demonstrated reduced velocity and changed morphology in the presence of virus. HSV1716 altered pHGG cytoskeletal dynamics by stabilizing microtubules, inhibiting glycogen synthase kinase-3, and preventing localized clustering of adenomatous polyposis coli (APC) to the leading edge of cells. HSV1716 treatment also reduced tumor infiltration in a mouse orthotopic xenograft DIPG model. Our results demonstrate that HSV1716 targets the migration and invasion of pHGG and DIPG and indicates the potential of an oncolytic virus (OV) to be used as a novel anti-invasive treatment strategy for pediatric brain tumors.
Collapse
Affiliation(s)
- Julia V. Cockle
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
- Yorkshire Regional Centre for Paediatric Oncology and Haematology, Leeds General Infirmary, Leeds LS1 3EX, UK
| | | | - Karen J. Scott
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Jill Thompson
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy Kottke
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ewan Morrison
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds LS9 7TF, UK
| | - Azam Ismail
- Department of Pathology, St. James’s University Hospital, Leeds LS9 7TF, UK
| | | | - Ailsa Rose
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Peter Selby
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | | | - Susan Picton
- Yorkshire Regional Centre for Paediatric Oncology and Haematology, Leeds General Infirmary, Leeds LS1 3EX, UK
| | - Susan Short
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Richard Vile
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Alan Melcher
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
- Institute of Cancer Research, London SM2 5NG, UK
| | - Elizabeth Ilett
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| |
Collapse
|