1
|
Orda MA, Fowler PMPT, Tayo LL. Modular Hub Genes in DNA Microarray Suggest Potential Signaling Pathway Interconnectivity in Various Glioma Grades. BIOLOGY 2024; 13:206. [PMID: 38666818 PMCID: PMC11048586 DOI: 10.3390/biology13040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Gliomas have displayed significant challenges in oncology due to their high degree of invasiveness, recurrence, and resistance to treatment strategies. In this work, the key hub genes mainly associated with different grades of glioma, which were represented by pilocytic astrocytoma (PA), oligodendroglioma (OG), anaplastic astrocytoma (AA), and glioblastoma multiforme (GBM), were identified through weighted gene co-expression network analysis (WGCNA) of microarray datasets retrieved from the Gene Expression Omnibus (GEO) database. Through this, four highly correlated modules were observed to be present across the PA (GSE50161), OG (GSE4290), AA (GSE43378), and GBM (GSE36245) datasets. The functional annotation and pathway enrichment analysis done through the Database for Annotation, Visualization, and Integrated Discovery (DAVID) showed that the modules and hub genes identified were mainly involved in signal transduction, transcription regulation, and protein binding, which collectively deregulate several signaling pathways, mainly PI3K/Akt and metabolic pathways. The involvement of several hub genes primarily linked to other signaling pathways, including the cAMP, MAPK/ERK, Wnt/β-catenin, and calcium signaling pathways, indicates potential interconnectivity and influence on the PI3K/Akt pathway and, subsequently, glioma severity. The Drug Repurposing Encyclopedia (DRE) was used to screen for potential drugs based on the up- and downregulated hub genes, wherein the synthetic progestin hormones norgestimate and ethisterone were the top drug candidates. This shows the potential neuroprotective effect of progesterone against glioma due to its influence on EGFR expression and other signaling pathways. Aside from these, several experimental and approved drug candidates were also identified, which include an adrenergic receptor antagonist, a PPAR-γ receptor agonist, a CDK inhibitor, a sodium channel blocker, a bradykinin receptor antagonist, and a dopamine receptor agonist, which further highlights the gene network as a potential therapeutic avenue for glioma.
Collapse
Affiliation(s)
- Marco A. Orda
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines; (M.A.O.); (P.M.P.T.F.)
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines
| | - Peter Matthew Paul T. Fowler
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines; (M.A.O.); (P.M.P.T.F.)
- Department of Biology, School of Health Sciences, Mapúa University, Makati City 1203, Philippines
| | - Lemmuel L. Tayo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines; (M.A.O.); (P.M.P.T.F.)
- Department of Biology, School of Health Sciences, Mapúa University, Makati City 1203, Philippines
| |
Collapse
|
2
|
The Role of Epigenetics in Brain and Spinal Cord Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1394:119-136. [PMID: 36587385 DOI: 10.1007/978-3-031-14732-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Identification of distinct genetic and epigenetic profiles in various neuroepithelial tumors has improved the classification and uncovered novel diagnostic, prognostic, and predictive molecular biomarkers for improved prediction of treatment response and outcome. Especially, in pediatric high-grade brain tumors, such as diffuse midline glioma, H3K27M-altered and posterior fossa group A-ependymoma, epigenetic changes predominate, along with changes in expression of known oncogenes and tumor suppressor genes induced by histone modifications and DNA methylation. The precise role of epigenetic abnormalities is important for understanding tumorigenesis and the establishment of brain tumor treatment strategies. Using powerful epigenetic-based therapies for cancer cells, the aberrantly regulated epigenome can be restored to a more normal state through epigenetic reprogramming. Combinations of agents targeting DNA methylation and/or other epigenetic modifications may be a promising cancer treatment. Therefore, the integration of multi-omics data including epigenomics is now important for classifying primary brain tumors and predicting their biological behavior. Recent advances in molecular genetics and epigenetic integrated diagnostics of brain tumors influence new strategies for targeted therapy.
Collapse
|
3
|
Malta TM, de Souza CF, Sabedot TS, Silva TC, Mosella MS, Kalkanis SN, Snyder J, Castro AVB, Noushmehr H. Glioma CpG island methylator phenotype (G-CIMP): biological and clinical implications. Neuro Oncol 2019; 20:608-620. [PMID: 29036500 DOI: 10.1093/neuonc/nox183] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gliomas are a heterogeneous group of brain tumors with distinct biological and clinical properties. Despite advances in surgical techniques and clinical regimens, treatment of high-grade glioma remains challenging and carries dismal rates of therapeutic success and overall survival. Challenges include the molecular complexity of gliomas, as well as inconsistencies in histopathological grading, resulting in an inaccurate prediction of disease progression and failure in the use of standard therapy. The updated 2016 World Health Organization (WHO) classification of tumors of the central nervous system reflects a refinement of tumor diagnostics by integrating the genotypic and phenotypic features, thereby narrowing the defined subgroups. The new classification recommends molecular diagnosis of isocitrate dehydrogenase (IDH) mutational status in gliomas. IDH-mutant gliomas manifest the cytosine-phosphate-guanine (CpG) island methylator phenotype (G-CIMP). Notably, the recent identification of clinically relevant subsets of G-CIMP tumors (G-CIMP-high and G-CIMP-low) provides a further refinement in glioma classification that is independent of grade and histology. This scheme may be useful for predicting patient outcome and may be translated into effective therapeutic strategies tailored to each patient. In this review, we highlight the evolution of our understanding of the G-CIMP subsets and how recent advances in characterizing the genome and epigenome of gliomas may influence future basic and translational research.
Collapse
Affiliation(s)
- Tathiane M Malta
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Camila F de Souza
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Thais S Sabedot
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Tiago C Silva
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Maritza S Mosella
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Steven N Kalkanis
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - James Snyder
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | | | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Utilization and impact of adjuvant therapy in anaplastic oligodendroglioma: an analysis on 1692 patients. J Neurooncol 2016; 129:567-575. [PMID: 27401158 DOI: 10.1007/s11060-016-2212-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
The aim of this study was to determine the utilization rates and impact of adjuvant therapy on overall survival (OS) for anaplastic oligodendroglioma (AO). Data were extracted from the National Cancer Data Base (NCDB). Chi square test, Kaplan-Meier method, and Cox regression models were employed in SPSS 22.0 (Armonk, NY: IBM Corp.) for data analyses. 1692 patients with AO who underwent surgery were identified. 945 (55.9 %) received adjuvant radiotherapy with concomitant chemotherapy (chemoRT), 102 (6.0 %) adjuvant radiotherapy (RT) sequentially followed by chemotherapy, 244 (14.4 %) adjuvant RT alone, and 401 (23.7 %) received no adjuvant therapy. Patients were more likely to receive adjuvant chemoRT if they were diagnosed in 2009-2013 vs. 2004-2008 (p < 0.001), had Karnofsky Performance Status >70 vs. <70 (p = 0.018), had private insurance vs. Medicaid vs. no insurance (p < 0.001), or had median income ≥$63,000 vs. <$63,000 (p = 0.014). Those who received adjuvant chemoRT (concomitant or sequential) had significantly better 5-year OS than those who received adjuvant RT alone or no adjuvant therapy (59.8 % vs. 65.0 % vs. 44.9 % vs. 45.6 %, p < 0.001). This significant 5-year OS benefit was also observed regardless of age. There was no difference in OS when comparing concomitant chemoRT to sequential RT and chemotherapy (p = 0.481). On multivariate analysis, receipt of adjuvant chemoRT (concomitant or sequential) remained an independent prognostic factor for improved OS. Adjuvant chemoRT (concomitant or sequential) is an independent prognostic factor for improved OS in anaplastic oligodendroglioma and should be considered for all clinically suitable patients who have undergone surgery for the disease.
Collapse
|
5
|
Simonetti G, Gaviani P, Botturi A, Innocenti A, Lamperti E, Silvani A. Clinical management of grade III oligodendroglioma. Cancer Manag Res 2015; 7:213-23. [PMID: 26251628 PMCID: PMC4524382 DOI: 10.2147/cmar.s56975] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Oligodendrogliomas represent the third most common type of glioma, comprising 4%-15% of all gliomas and can be classified by degree of malignancy into grade II and grade III, according to WHO classification. Only 30% of oligodendroglial tumors have anaplastic characteristics. Anaplastic oligodendroglioma (AO) is often localized as a single lesion in the white matter and in the cortex, rarely in brainstem or spinal cord. The management of AO is deeply changed in the recent years. Maximal safe surgical resection followed by radiotherapy (RT) was considered as the standard of care since paramount findings regarding molecular aspects, in particular co-deletion of the short arm of chromosome 1 and the long arm of chromosome 19, revealed that these subsets of AO, benefit in terms of overall survival (OS) and progression-free survival (PFS), from the addition of chemotherapy to RT. Allelic losses of chromosomes 1p and 19q occur in 50%-70% of both low-grade and anaplastic tumors, representing a strong prognostic factor and a powerful predictor of prolonged survival. Several other molecular markers have potential clinical significance as IDH1 mutations, confirming the strong prognostic role for OS. Malignant brain tumors negatively impacts on patients' quality of life. Seizures, visual impairment, headache, and cognitive disorders can be present. Moreover, chemotherapy and RT have important side effects. For these reasons, "health-related quality of life" is becoming a topic of growing interest, investigating on physical, mental, emotional, and social well-being. Understanding the impact of medical treatment on health-related quality of life will probably have a growing effect both on health care strategies and on patients.
Collapse
Affiliation(s)
- G Simonetti
- Neurooncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - P Gaviani
- Neurooncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - A Botturi
- Neurooncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - A Innocenti
- Neurooncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - E Lamperti
- Neurooncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - A Silvani
- Neurooncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
6
|
Vigneswaran K, Neill S, Hadjipanayis CG. Beyond the World Health Organization grading of infiltrating gliomas: advances in the molecular genetics of glioma classification. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:95. [PMID: 26015937 DOI: 10.3978/j.issn.2305-5839.2015.03.57] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/12/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND Traditional classification of diffuse infiltrating gliomas (DIGs) as World Health Organization (WHO) grades II-IV is based on histological features of a heterogeneous population of tumors with varying prognoses and treatments. Over the last decade, research efforts have resulted in a better understanding of the molecular basis of glioma formation as well as the genetic alterations commonly identified in diffuse gliomas. METHODS A systematic review of the current literature related to advances in molecular phenotypes, mutations, and genomic analysis of gliomas was carried out using a PubMed search for these key terms. Data was studied and synthesized to generate a comprehensive review of glioma subclassification. RESULTS This new data helps supplement the existing WHO grading scale by subtyping gliomas into specific molecular groups. The emerging molecular profile of diffuse gliomas includes the studies of gene expression and DNA methylation in different glioma subtypes. The discovery of novel mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) provides new biomarkers as points of stratification of gliomas based on prognosis and treatment response. Gliomas that harbor CpG island hypermethylator phenotypes constitute a subtype of glioma with improved survival. The difficulty of classifying oligodendroglial lineage of tumors can be aided with identification of 1p/19q codeletion. Glioblastomas (GBMs) previously described as primary or secondary can now be divided based on gene expression into proneural, mesenchymal, and classical subtypes and the identification of mutations in the promoter region of the telomerase reverse transcriptase (TERTp) have been correlated with poor prognosis in GBMs. CONCLUSIONS Incorporation of new molecular and genomic changes into the existing WHO grading of DIGs may provide better patient prognostication as well as advance the development of patient-specific treatments and clinical trials.
Collapse
Affiliation(s)
- Krishanthan Vigneswaran
- 1 Department of Neurosurgery; 2 Department of Pathology, Brain Tumor Nanotechnology Laboratory, Winship Cancer Institute of Emory University, Emory University School of Medicine Atlanta, GA 30322, USA
| | - Stewart Neill
- 1 Department of Neurosurgery; 2 Department of Pathology, Brain Tumor Nanotechnology Laboratory, Winship Cancer Institute of Emory University, Emory University School of Medicine Atlanta, GA 30322, USA
| | - Costas G Hadjipanayis
- 1 Department of Neurosurgery; 2 Department of Pathology, Brain Tumor Nanotechnology Laboratory, Winship Cancer Institute of Emory University, Emory University School of Medicine Atlanta, GA 30322, USA
| |
Collapse
|