1
|
Kim JW, Miska J, Young JS, Rashidi A, Kane JR, Panek WK, Kanojia D, Han Y, Balyasnikova IV, Lesniak MS. A Comparative Study of Replication-Incompetent and -Competent Adenoviral Therapy-Mediated Immune Response in a Murine Glioma Model. Mol Ther Oncolytics 2017; 5:97-104. [PMID: 28573184 PMCID: PMC5443908 DOI: 10.1016/j.omto.2017.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Oncolytic virotherapy is a treatment approach with increasing clinical relevance, as indicated by the marked survival benefit seen in animal models and its current exploration in human patients with cancer. The use of an adenovirus vector for this therapeutic modality is common, has significant clinical benefit in animals, and its efficacy has recently been linked to an anti-tumor immune response that occurs following tumor antigen presentation. Here, we analyzed the adaptive immune system's response following viral infection by comparing replication-incompetent and replication-competent adenoviral vectors. Our findings suggest that cell death caused by replication-competent adenoviral vectors is required to induce a significant anti-tumor immune response and survival benefits in immunocompetent mice bearing intracranial glioma. We observed significant changes in the repertoire of immune cells in the brain and draining lymph nodes and significant recruitment of CD103+ dendritic cells (DCs) in response to oncolytic adenoviral therapy, suggesting the active role of the immune system in anti-tumor response. Our data suggest that the response to oncolytic virotherapy is accompanied by local and systemic immune responses and should be taken in consideration in the future design of the clinical studies evaluating oncolytic virotherapy in patients with glioblastoma multiforme (GBM).
Collapse
Affiliation(s)
- Julius W. Kim
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jacob S. Young
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - J. Robert Kane
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Wojciech K. Panek
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yu Han
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Irina V. Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Studebaker AW, Hutzen BJ, Pierson CR, Haworth KB, Cripe TP, Jackson EM, Leonard JR. Oncolytic Herpes Virus rRp450 Shows Efficacy in Orthotopic Xenograft Group 3/4 Medulloblastomas and Atypical Teratoid/Rhabdoid Tumors. MOLECULAR THERAPY-ONCOLYTICS 2017. [PMID: 28649600 PMCID: PMC5472147 DOI: 10.1016/j.omto.2017.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Pediatric brain tumors including medulloblastoma and atypical teratoid/rhabdoid tumor are associated with significant mortality and treatment-associated morbidity. While medulloblastoma tumors within molecular subgroups 3 and 4 have a propensity to metastasize, atypical teratoid/rhabdoid tumors frequently afflict a very young patient population. Adjuvant treatment options for children suffering with these tumors are not only sub-optimal but also associated with many neurocognitive obstacles. A potentially novel treatment approach is oncolytic virotherapy, a developing therapeutic platform currently in early-phase clinical trials for pediatric brain tumors and recently US Food and Drug Administration (FDA)-approved to treat melanoma in adults. We evaluated the therapeutic potential of the clinically available oncolytic herpes simplex vector rRp450 in cell lines derived from medulloblastoma and atypical teratoid/rhabdoid tumor. Cells of both tumor types were supportive of virus replication and virus-mediated cytotoxicity. Orthotopic xenograft models of medulloblastoma and atypical teratoid/rhabdoid tumors displayed significantly prolonged survival following a single, stereotactic intratumoral injection of rRp450. Furthermore, addition of the chemotherapeutic prodrug cyclophosphamide (CPA) enhanced rRp450's in vivo efficacy. In conclusion, oncolytic herpes viruses with the ability to bioactivate the prodrug CPA within the tumor microenvironment warrant further investigation as a potential therapy for pediatric brain tumors.
Collapse
Affiliation(s)
- Adam W Studebaker
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Brian J Hutzen
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pathology, The Ohio State University College of Medicine, Columbus, OH 43210, USA.,Division of Anatomy, The Ohio State University, Columbus, OH 43210, USA
| | - Kellie B Haworth
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Division of Hematology/Oncology/Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Timothy P Cripe
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Division of Hematology/Oncology/Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Eric M Jackson
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Jeffrey R Leonard
- Department of Neurosurgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| |
Collapse
|
3
|
Coban EA, Kasikci E, Karatas OF, Suakar O, Kuskucu A, Altunbek M, Türe U, Sahin F, Bayrak OF. Characterization of stem-like cells in a new astroblastoma cell line. Exp Cell Res 2017; 352:393-402. [DOI: 10.1016/j.yexcr.2017.02.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/06/2017] [Accepted: 02/19/2017] [Indexed: 01/06/2023]
|
4
|
Abstract
The immune system is capable of recognizing tumors and eliminates many early malignant cells. However, tumors evolve to evade immune attack, and the tumor microenvironment is immunosuppressive. Immune responses are regulated by a number of immunological checkpoints that promote protective immunity and maintain tolerance. T cell coinhibitory pathways restrict the strength and duration of immune responses, thereby limiting immune-mediated tissue damage, controlling resolution of inflammation, and maintaining tolerance to prevent autoimmunity. Tumors exploit these coinhibitory pathways to evade immune eradication. Blockade of the PD-1 and CTLA-4 checkpoints is proving to be an effective and durable cancer immunotherapy in a subset of patients with a variety of tumor types, and additional combinations are further improving response rates. In this review we discuss the immunoregulatory functions of coinhibitory pathways and their translation to effective immunotherapies for cancer.
Collapse
Affiliation(s)
- Susanne H Baumeister
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Division of Pediatric Hematology-Oncology, Boston Children's Hospital, Boston, Massachusetts 02115.,Harvard Medical School, Boston, Massachusetts 02115
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Harvard Medical School, Boston, Massachusetts 02115
| | - Glenn Dranoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Novartis Institutes for BioMedical Research, Exploratory Immuno-oncology, Cambridge, Massachusetts 02139
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, and Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
5
|
Berghauser Pont LME, Balvers RK, Kloezeman JJ, Nowicki MO, van den Bossche W, Kremer A, Wakimoto H, van den Hoogen BG, Leenstra S, Dirven CMF, Chiocca EA, Lawler SE, Lamfers MLM. In vitro screening of clinical drugs identifies sensitizers of oncolytic viral therapy in glioblastoma stem-like cells. Gene Ther 2015. [PMID: 26196249 DOI: 10.1038/gt.2015.72] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oncolytic viruses (OV) have broad potential as an adjuvant for the treatment of solid tumors. The present study addresses the feasibility of clinically applicable drugs to enhance the oncolytic potential of the OV Delta24-RGD in glioblastoma. In total, 446 drugs were screened for their viral sensitizing properties in glioblastoma stem-like cells (GSCs) in vitro. Validation was done for 10 drugs to determine synergy based on the Chou Talalay assay. Mechanistic studies were undertaken to assess viability, replication efficacy, viral infection enhancement and cell death pathway induction in a selected panel of drugs. Four viral sensitizers (fluphenazine, indirubin, lofepramine and ranolazine) were demonstrated to reproducibly synergize with Delta24-RGD in multiple assays. After validation, we underscored general applicability by testing candidate drugs in a broader context of a panel of different GSCs, various solid tumor models and multiple OVs. Overall, this study identified four viral sensitizers, which synergize with Delta24-RGD and two other strains of OVs. The viral sensitizers interact with infection, replication and cell death pathways to enhance efficacy of the OV.
Collapse
Affiliation(s)
- L M E Berghauser Pont
- Department of Neurosurgery, Brain Tumor Center Erasmus MC, Rotterdam, The Netherlands
| | - R K Balvers
- Department of Neurosurgery, Brain Tumor Center Erasmus MC, Rotterdam, The Netherlands
| | - J J Kloezeman
- Department of Neurosurgery, Brain Tumor Center Erasmus MC, Rotterdam, The Netherlands
| | - M O Nowicki
- Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - W van den Bossche
- Department of Neurosurgery, Brain Tumor Center Erasmus MC, Rotterdam, The Netherlands.,Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - A Kremer
- Department of Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - H Wakimoto
- Department of Neurosurgery, Massachussets General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - S Leenstra
- Department of Neurosurgery, Brain Tumor Center Erasmus MC, Rotterdam, The Netherlands.,Department of Neurosurgery, Elisabeth Hospital, Tilburg, The Netherlands
| | - C M F Dirven
- Department of Neurosurgery, Brain Tumor Center Erasmus MC, Rotterdam, The Netherlands
| | - E A Chiocca
- Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - S E Lawler
- Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M L M Lamfers
- Department of Neurosurgery, Brain Tumor Center Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|