1
|
Ijaz M, Ullah Z, Aslam B, Khurshid M, Chen P, Guo B. From promise to progress: the dynamic landscape of glioblastoma immunotherapy. Drug Discov Today 2024; 29:104188. [PMID: 39307298 DOI: 10.1016/j.drudis.2024.104188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Glioblastoma multiforme (GBM) is the most common CNS cancer, it has dismal survival rates despite several effective mediators: intensified cytotoxic therapy, chimeric antigen receptor (CAR)-T cell therapy, viral therapy, adoptive cell therapy, immune checkpoint blockade therapy, radiation therapy and vaccine therapy. This review examines the basic concepts underlying immune targeting and examines products such as checkpoint blockade drugs, CAR-T cells, oncolytic viruses, combinatory multimodal immunotherapy and cancer vaccines. New approaches to overcoming current constraints and challenges in GBM therapy are discussed, based on recent studies into these tactics, findings from ongoing clinical trials, as well as previous trial results.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China; Institute of Microbiology, Government College University Faisalabad, Pakistan
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bilal Aslam
- Institute of Microbiology, Government College University Faisalabad, Pakistan
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University Faisalabad, Pakistan
| | - Pengfei Chen
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Shenzhen, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Wang AF, Hsueh B, Choi BD, Gerstner ER, Dunn GP. Immunotherapy for Brain Tumors: Where We Have Been, and Where Do We Go From Here? Curr Treat Options Oncol 2024; 25:628-643. [PMID: 38649630 DOI: 10.1007/s11864-024-01200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
OPINION STATEMENT Immunotherapy for glioblastoma (GBM) remains an intensive area of investigation. Given the seismic impact of cancer immunotherapy across a range of malignancies, there is optimism that harnessing the power of immunity will influence GBM as well. However, despite several phase 3 studies, there are still no FDA-approved immunotherapies for GBM. Importantly, the field has learned a great deal from the randomized studies to date. Today, we are continuing to better understand the disease-specific features of the microenvironment in GBM-as well as the exploitable antigenic characteristic of the tumor cells themselves-that are informing the next generation of immune-based therapeutic strategies. The coming phase of next-generation immunotherapies is thus poised to bring us closer to treatments that will improve the lives of patients with GBM.
Collapse
Affiliation(s)
- Alexander F Wang
- Department of Neurosurgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Brian Hsueh
- Department of Neurosurgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Bryan D Choi
- Department of Neurosurgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Brain Tumor Immunology and Immunotherapy Program, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth R Gerstner
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Gavin P Dunn
- Department of Neurosurgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.
- Brain Tumor Immunology and Immunotherapy Program, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Chen E, Ling AL, Reardon DA, Chiocca EA. Lessons learned from phase 3 trials of immunotherapy for glioblastoma: Time for longitudinal sampling? Neuro Oncol 2024; 26:211-225. [PMID: 37995317 PMCID: PMC10836778 DOI: 10.1093/neuonc/noad211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
Glioblastoma (GBM)'s median overall survival is almost 21 months. Six phase 3 immunotherapy clinical trials have recently been published, yet 5/6 did not meet approval by regulatory bodies. For the sixth, approval is uncertain. Trial failures result from multiple factors, ranging from intrinsic tumor biology to clinical trial design. Understanding the clinical and basic science of these 6 trials is compelled by other immunotherapies reaching the point of advanced phase 3 clinical trial testing. We need to understand more of the science in human GBMs in early trials: the "window of opportunity" design may not be best to understand complex changes brought about by immunotherapeutic perturbations of the GBM microenvironment. The convergence of increased safety of image-guided biopsies with "multi-omics" of small cell numbers now permits longitudinal sampling of tumor and biofluids to dissect the complex temporal changes in the GBM microenvironment as a function of the immunotherapy.
Collapse
Affiliation(s)
- Ethan Chen
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Alexander L Ling
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Zhao B, Wu J, Li H, Wang Y, Wang Y, Xing H, Wang Y, Ma W. Recent advances and future challenges of tumor vaccination therapy for recurrent glioblastoma. Cell Commun Signal 2023; 21:74. [PMID: 37046332 PMCID: PMC10091563 DOI: 10.1186/s12964-023-01098-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/07/2023] [Indexed: 04/14/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant CNS tumor with a highest incidence rate, and most patients would undergo a recurrence. Recurrent GBM (rGBM) shows an increasing resistance to chemotherapy and radiotherapy, leading to a significantly poorer prognosis and the urgent need for novel treatments. Immunotherapy, a rapidly developing anti-tumor therapy in recent years, has shown its potential value in rGBM. Recent studies on PD-1 immunotherapy and CAR-T therapy have shown some efficacy, but the outcome was not as expected. Tumor vaccination is the oldest approach of immunotherapies, which has returned to the research focus because of the failure of other strategies and subversive understanding of CNS. The isolation effect of blood brain barrier and the immunosuppressive cell infiltration could lead to resistance existing in all phases of the anti-tumor immune response, where novel tumor vaccines have been designed to overcome these problems through new tumor antigenic targets and regulatory of the systematic immune response. In this review, the immunological characteristics of CNS and GBM would be discussed and summarized, as well as the mechanism of each novel tumor vaccine for rGBM. And through the review of completed early-phase studies and ongoing large-scale phase III clinical trials, evaluation could be conducted for potential immune response, biosecurity and initial clinical outcome, which further draw a panorama of this vital research field and provide some deep thoughts for the prospective tendency of vaccination strategy. Video Abstract.
Collapse
Affiliation(s)
- Binghao Zhao
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Jiaming Wu
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Huanzhang Li
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Yuekun Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Yaning Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Hao Xing
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Yu Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China.
| | - Wenbin Ma
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
5
|
Giotta Lucifero A, Luzzi S. Emerging immune-based technologies for high-grade gliomas. Expert Rev Anticancer Ther 2022; 22:957-980. [PMID: 35924820 DOI: 10.1080/14737140.2022.2110072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The selection of a tailored and successful strategy for high-grade gliomas (HGGs) treatment is still a concern. The abundance of aberrant mutations within the heterogenic genetic landscape of glioblastoma strongly influences cell expansion, proliferation, and therapeutic resistance. Identification of immune evasion pathways opens the way to novel immune-based strategies. This review intends to explore the emerging immunotherapies for HGGs. The immunosuppressive mechanisms related to the tumor microenvironment and future perspectives to overcome glioma immunity barriers are also debated. AREAS COVERED An extensive literature review was performed on the PubMed/Medline and ClinicalTrials.gov databases. Only highly relevant articles in English and published in the last 20 years were selected. Data about immunotherapies coming from preclinical and clinical trials were summarized. EXPERT OPINION The overall level of evidence about the efficacy and safety of immunotherapies for HGGs is noteworthy. Monoclonal antibodies have been approved as second-line treatment, while peptide vaccines, viral gene strategies, and adoptive technologies proved to boost a vivid antitumor immunization. Malignant brain tumor-treating fields are ever-changing in the upcoming years. Constant refinements and development of new routes of drug administration will permit to design of novel immune-based treatment algorithms thus improving the overall survival.
Collapse
Affiliation(s)
- Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
6
|
Shi Y, Wu M, Liu Y, Hu L, Wu H, Xie L, Liu Z, Wu A, Chen L, Xu C. ITGA5 Predicts Dual-Drug Resistance to Temozolomide and Bevacizumab in Glioma. Front Oncol 2021; 11:769592. [PMID: 34976814 PMCID: PMC8719456 DOI: 10.3389/fonc.2021.769592] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
AIMS Anti-angiotherapy (Bevacizumab) is currently regarded as a promising option for glioma patients who are resistant to temozolomide (TMZ) treatment. But ongoing clinical research failed to meet therapeutic expectations. This study aimed to explore the pivotal genetic feature responsible for TMZ and Bevacizumab resistance in glioma patients. METHODS We downloaded the transcriptomic and methylation data of glioma patients from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Gene Expression Omnibus (GEO) databases and grouped these patients into resistant and non-resistant groups based on their clinical profiles. Differentially expressed genes and pathways were identified and exhibited with software in R platform. A TMZ-resistant cell line was constructed for validating the expression change of the candidate gene, ITGA5. An ITGA5-overexpressing cell line was also constructed to investigate its biological function using the CCK8 assay, Western blot, periodic acid-Schiff (PAS) staining, and transcriptional sequencing. RESULTS Change of the cell morphology and polarity was closely associated with TMZ mono-resistance and TMZ/Bevacizumab dual resistance in glioma patients. The expression level of ITGA5 was effective in determining drug resistance and the outcome of glioma patients, which is regulated by methylation on two distinct sites. ITGA5 was augmented in TMZ-resistant glioma cells, while overexpressing ITGA5 altered the cell-promoted TMZ resistance through enhancing vascular mimicry (VM) formation correspondingly. CONCLUSIONS Both the epigenetic and transcriptional levels of ITGA5 are effective in predicting TMZ and Bevacizumab resistance, indicating that ITGA5 may serve as a predictor of the treatment outcomes of glioma patients.
Collapse
Affiliation(s)
- Ying Shi
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mengwan Wu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| | - Yuyang Liu
- Chinese People’s Liberation Army (PLA) Institute of Neurosurgery, Chinese PLA General Hospital and PLA Medical College, Beijing, China
| | - Lanlin Hu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| | - Hong Wu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| | - Lei Xie
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiwei Liu
- The Center for Advanced Semiconductor & Integrated Micro-System, University of Electronic Science and Technology of China, Chengdu, China
| | - Anhua Wu
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ling Chen
- Chinese People’s Liberation Army (PLA) Institute of Neurosurgery, Chinese PLA General Hospital and PLA Medical College, Beijing, China
| | - Chuan Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| |
Collapse
|
7
|
de Cristo Soares Alves A, Lavayen V, de Fraga Dias A, Bruinsmann FA, Scholl JN, Cé R, Visioli F, Oliveira Battastini AM, Stanisçuaski Guterres S, Figueiró F, Raffin Pohlmann A. EGFRvIII peptide nanocapsules and bevacizumab nanocapsules: a nose-to-brain multitarget approach against glioblastoma. Nanomedicine (Lond) 2021; 16:1775-1790. [PMID: 34313137 DOI: 10.2217/nnm-2021-0169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the antitumor efficacy of bevacizumab-functionalized nanocapsules in a rat glioblastoma model after the pretreatment with nanocapsules functionalized with a peptide-specific to the epidermal growth factor receptor variant III. Materials & methods: Nanocapsules were prepared, physicochemical characterized and intranasally administered to rats. Parameters such as tumor size, histopathological characteristics and infiltration of CD8+ T lymphocytes were evaluated. Results: The strategy of treatment resulted in a reduction of 87% in the tumor size compared with the control group and a higher infiltration of CD8+ T lymphocytes in tumoral tissue. Conclusion: The block of two different molecular targets using nose-to-brain delivery represents a new and promising approach against glioblastoma.
Collapse
Affiliation(s)
- Aline de Cristo Soares Alves
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil
| | - Vladimir Lavayen
- Departamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS 91501-970, Brazil
| | - Amanda de Fraga Dias
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS 90035-003, Brazil
| | - Franciele Aline Bruinsmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil
| | - Juliete Nathali Scholl
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS 90035-003, Brazil
| | - Rodrigo Cé
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil
| | - Fernanda Visioli
- Programa de Pós-Graduação em Odontologia, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2492, Porto Alegre, RS 90035-003, Brazil.,Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS 90035-903, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS 90035-003, Brazil.,Departamento de Bioquímica, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS 90035-003, Brazil
| | - Silvia Stanisçuaski Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil
| | - Fabrício Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS 90035-003, Brazil.,Departamento de Bioquímica, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS 90035-003, Brazil
| | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil
| |
Collapse
|
8
|
McBain C, Lawrie TA, Rogozińska E, Kernohan A, Robinson T, Jefferies S. Treatment options for progression or recurrence of glioblastoma: a network meta-analysis. Cochrane Database Syst Rev 2021; 5:CD013579. [PMID: 34559423 PMCID: PMC8121043 DOI: 10.1002/14651858.cd013579.pub2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is a highly malignant brain tumour that almost inevitably progresses or recurs after first line standard of care. There is no consensus regarding the best treatment/s to offer people upon disease progression or recurrence. For the purposes of this review, progression and recurrence are considered as one entity. OBJECTIVES To evaluate the effectiveness of further treatment/s for first and subsequent progression or recurrence of glioblastoma (GBM) among people who have received the standard of care (Stupp protocol) for primary treatment of the disease; and to prepare a brief economic commentary on the available evidence. SEARCH METHODS We searched MEDLINE and Embase electronic databases from 2005 to December 2019 and the Cochrane Central Register of Controlled Trials (CENTRAL, in the Cochrane Library; Issue 12, 2019). Economic searches included the National Health Service Economic Evaluation Database (NHS EED) up to 2015 (database closure) and MEDLINE and Embase from 2015 to December 2019. SELECTION CRITERIA Randomised controlled trials (RCTs) and comparative non-randomised studies (NRSs) evaluating effectiveness of treatments for progressive/recurrent GBM. Eligible studies included people with progressive or recurrent GBM who had received first line radiotherapy with concomitant and adjuvant temozolomide (TMZ). DATA COLLECTION AND ANALYSIS Two review authors independently selected studies and extracted data to a pre-designed data extraction form. We conducted network meta-analyses (NMA) and ranked treatments according to effectiveness for each outcome using the random-effects model and Stata software (version 15). We rated the certainty of evidence using the GRADE approach. MAIN RESULTS We included 42 studies: these comprised 34 randomised controlled trials (RCTs) and 8 non-randomised studies (NRSs) involving 5236 participants. We judged most RCTs to be at a low risk of bias and NRSs at high risk of bias. Interventions included chemotherapy, re-operation, re-irradiation and novel therapies either used alone or in combination. For first recurrence, we included 11 interventions in the network meta-analysis (NMA) for overall survival (OS), and eight in the NMA for progression-free survival (PFS). Lomustine (LOM; also known as CCNU) was the most common comparator and was used as the reference treatment. No studies in the NMA evaluated surgery, re-irradiation, PCV (procarbazine, lomustine, vincristine), TMZ re-challenge or best supportive care. We could not perform NMA for second or later recurrence due to insufficient data. Quality-of-life data were sparse. First recurrence (NMA findings) Median OS across included studies in the NMA ranged from 5.5 to 12.6 months and median progression-free survival (PFS) ranged from 1.5 months to 4.2 months. We found no high-certainty evidence that any treatments tested were better than lomustine. These treatments included the following. Bevacizumab plus lomustine: Evidence suggested probably little or no difference in OS between bevacizumab (BEV) combined with lomustine (LOM) and LOM monotherapy (hazard ratio (HR) 0.91, 0.75 to 1.10; moderate-certainty evidence), although BEV + LOM may improve PFS (HR 0.57, 95% confidence interval (CI) 0.44 to 0.74; low-certainty evidence). Bevacizumab monotherapy: Low-certainty evidence suggested there may be little or no difference in OS (HR 1.22, 95% CI 0.84 to 1.76) and PFS (HR 0.90, 95% CI 0.58 to 1.38; low-certainty evidence) between BEV and LOM monotherapies; more evidence on BEV is needed. Regorafenib (REG): REG may improve OS compared with LOM (HR 0.50, 95% CI 0.33 to 0.76; low-certainty evidence). Evidence on PFS was very low certainty and more evidence on REG is needed. Temozolomide (TMZ) plus Depatux-M (ABT414): For OS, low-certainty evidence suggested that TMZ plus ABT414 may be more effective than LOM (HR 0.66, 95% CI 0.47 to 0.92) and may be more effective than BEV (HR 0.54, 95% CI 0.33 to 0.89; low-certainty evidence). This may be due to the TMZ component only and more evidence is needed. Fotemustine (FOM): FOM and LOM may have similar effects on OS (HR 0.89, 95% CI 0.51 to 1.57, low-certainty evidence). Bevacizumab and irinotecan (IRI): Evidence on BEV + irinotecan (IRI) versus LOM for both OS and PFS is very uncertain and there is probably little or no difference between BEV + IRI versus BEV monotherapy (OS: HR 0.95, 95% CI 0.70 to 1.30; moderate-certainty evidence). When treatments were ranked for OS, FOM ranked first, BEV + LOM second, LOM third, BEV + IRI fourth, and BEV fifth. Ranking does not take into account the certainty of the evidence, which also suggests there may be little or no difference between FOM and LOM. Other treatments Three studies evaluated re-operation versus no re-operation, with or without re-irradiation and chemotherapy, and these suggested possible survival advantages with re-operation within the context of being able to select suitable candidates for re-operation. A cannabinoid treatment in the early stages of evaluation, in combination with TMZ, merits further evaluation. Second or later recurrence Limited evidence from three heterogeneous studies suggested that radiotherapy with or without BEV may have a beneficial effect on survival but more evidence is needed. Evidence was insufficient to draw conclusions about the best radiotherapy dosage. Other evidence suggested that there may be little difference in survival with tumour-treating fields compared with physician's best choice of treatment. We found no reliable evidence on best supportive care. Severe adverse events (SAEs) The BEV+LOM combination was associated with significantly greater risk of SAEs than LOM monotherapy (RR 2.51, 95% CI 1.72 to 3.66, high-certainty evidence), and ranked joint worst with cediranib + LOM (RR 2.51, 95% CI 1.29 to 4.90; high-certainty evidence). LOM ranked best and REG ranked second best. Adding novel treatments to BEV was generally associated with a higher risk of severe adverse events compared with BEV alone. AUTHORS' CONCLUSIONS For treatment of first recurrence of GBM, among people previously treated with surgery and standard chemoradiotherapy, the combination treatments evaluated did not improve overall survival compared with LOM monotherapy and were often associated with a higher risk of severe adverse events. Limited evidence suggested that re-operation with or without re-irradiation and chemotherapy may be suitable for selected candidates. Evidence on second recurrence is sparse. Re-irradiation with or without bevacizumab may be of value in selected individuals, but more evidence is needed.
Collapse
Affiliation(s)
- Catherine McBain
- Clinical Oncology, The Christie NHS FT, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester, UK
| | | | | | - Ashleigh Kernohan
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tomos Robinson
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah Jefferies
- Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
9
|
Giotta Lucifero A, Luzzi S. Against the Resilience of High-Grade Gliomas: The Immunotherapeutic Approach (Part I). Brain Sci 2021; 11:brainsci11030386. [PMID: 33803885 PMCID: PMC8003180 DOI: 10.3390/brainsci11030386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
The resilience of high-grade gliomas (HGGs) against conventional chemotherapies is due to their heterogeneous genetic landscape, adaptive phenotypic changes, and immune escape mechanisms. Innovative immunotherapies have been developed to counteract the immunosuppressive capability of gliomas. Nevertheless, further research is needed to assess the efficacy of the immuno-based approach. The aim of this study is to review the newest immunotherapeutic approaches for glioma, focusing on the drug types, mechanisms of action, clinical pieces of evidence, and future challenges. A PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis)-based literature search was performed on PubMed/Medline and ClinicalTrials.gov databases using the keywords “active/adoptive immunotherapy,” “monoclonal antibodies,” “vaccine,” and “engineered T cell.”, combined with “malignant brain tumor”, “high-grade glioma.” Only articles written in English published in the last 10 years were selected, filtered based on best relevance. Active immunotherapies include systemic temozolomide, monoclonal antibodies, and vaccines. In several preclinical and clinical trials, adoptive immunotherapies, including T, natural killer, and natural killer T engineered cells, have been shown to be potential treatment options for relapsing gliomas. Systemic temozolomide is considered the backbone for newly diagnosed HGGs. Bevacizumab and rindopepimut are promising second-line treatments. Adoptive immunotherapies have been proven for relapsing tumors, but further evidence is needed.
Collapse
Affiliation(s)
- Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
- Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Correspondence:
| |
Collapse
|
10
|
Chelliah SS, Paul EAL, Kamarudin MNA, Parhar I. Challenges and Perspectives of Standard Therapy and Drug Development in High-Grade Gliomas. Molecules 2021; 26:1169. [PMID: 33671796 PMCID: PMC7927069 DOI: 10.3390/molecules26041169] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
Despite their low incidence rate globally, high-grade gliomas (HGG) remain a fatal primary brain tumor. The recommended therapy often is incapable of resecting the tumor entirely and exclusively targeting the tumor leads to tumor recurrence and dismal prognosis. Additionally, many HGG patients are not well suited for standard therapy and instead, subjected to a palliative approach. HGG tumors are highly infiltrative and the complex tumor microenvironment as well as high tumor heterogeneity often poses the main challenges towards the standard treatment. Therefore, a one-fit-approach may not be suitable for HGG management. Thus, a multimodal approach of standard therapy with immunotherapy, nanomedicine, repurposing of older drugs, use of phytochemicals, and precision medicine may be more advantageous than a single treatment model. This multimodal approach considers the environmental and genetic factors which could affect the patient's response to therapy, thus improving their outcome. This review discusses the current views and advances in potential HGG therapeutic approaches and, aims to bridge the existing knowledge gap that will assist in overcoming challenges in HGG.
Collapse
Affiliation(s)
- Shalini Sundramurthi Chelliah
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Ervin Ashley Lourdes Paul
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| | - Muhamad Noor Alfarizal Kamarudin
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| | - Ishwar Parhar
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| |
Collapse
|
11
|
Yang R, Guo J, Lin Z, Song H, Feng Z, Ou Y, Zhou M, Li Y, Yi G, Li K, Li K, Guo M, Wang X, Huang G, Liu Z, Qi S, Liu Y. The combination of two-dimensional and three-dimensional analysis methods contributes to the understanding of glioblastoma spatial heterogeneity. JOURNAL OF BIOPHOTONICS 2020; 13:e201900196. [PMID: 31743584 DOI: 10.1002/jbio.201900196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/09/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Heterogeneity is regarded as the major factor leading to the poor outcomes of glioblastoma (GBM) patients. However, conventional two-dimensional (2D) analysis methods, such as immunohistochemistry and immunofluorescence, have limited capacity to reveal GBM spatial heterogeneity. Thus, we sought to develop an effective analysis strategy to increase the understanding of GBM spatial heterogeneity. Here, 2D and three-dimensional (3D) analysis methods were compared for the examination of cell morphology, cell distribution and large intact structures, and both types of methods were employed to dissect GBM spatial heterogeneity. The results showed that 2D assays showed only cross-sections of specimens but provided a full view. To visualize intact GBM specimens in 3D without sectioning, the optical tissue clearing methods CUBIC and iDISCO+ were used to clear opaque specimens so that they would become more transparent, after which the specimens were imaged with a two-photon microscope. The 3D analysis methods showed specimens at a large spatial scale at cell-level resolution and had overwhelming advantages in comparison to the 2D methods. Furthermore, in 3D, heterogeneity in terms of cell stemness, the microvasculature, and immune cell infiltration within GBM was comprehensively observed and analysed. Overall, we propose that 2D and 3D analysis methods should be combined to provide much greater detail to increase the understanding of GBM spatial heterogeneity.
Collapse
Affiliation(s)
- Runwei Yang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinglin Guo
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiying Lin
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haimin Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhanpeng Feng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yichao Ou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingfeng Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaomin Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guozhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke Li
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaishu Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Manlan Guo
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiran Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Glioma Center, Guangzhou, China
| | - Zhifeng Liu
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Glioma Center, Guangzhou, China
| | - Yawei Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Wang A, Cui M, Qu H, Di J, Wang Z, Xing J, Wu F, Wu W, Wang X, Shen L, Jiang B, Su X. Induction of anti-EGFR immune response with mimotopes identified from a phage display peptide library by panitumumab. Oncotarget 2018; 7:75293-75306. [PMID: 27659529 PMCID: PMC5342741 DOI: 10.18632/oncotarget.12167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 09/12/2016] [Indexed: 12/22/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is overexpressed in several epithelial tumors. Anti-EGFR humanized monoclonal antibodies, cetuximab and panitumumab, in combination with chemotherapy have improved the prognosis for patients with wild-type RAS tumors. To identify mimotopes of EGFR and develop mimotope-based EGFR vaccines, we screened a phage display peptide library with panitumumab. Two EGFR mimotopes P19 and P26, which could be recognized by panitumumab specifically, were isolated. To enhance the immune responses, we generated recombinant proteins of P19 or P26 fused to a heat-shock cognate protein 70 (Hsc70), and evaluated the efficacy of Hsc70-P19 and Hsc70-P26 as vaccines in vivo. Immunization with Hsc70-P19 or Hsc70-P26 fusion protein stimulated the immune system to produce specific antibodies against peptides as well as EGFR. Moreover, antibodies elicited against mimotopes could induce antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), and inhibit the proliferation of EGFR-overexpressing A431 cells. Treatment with Hsc70-P19 and Hsc70-P26 significantly reduced tumor growth in BALB/c transplantable lung cancer models. Although there was no sequence homology between the phage-derived peptides and EGFR by alignments, both peptides mimic the conformational structure of EGFR binding to panitumumab. In conclusion, the mimotopes we identified from phage display peptide library could be promising candidate vaccines for active anti-EGFR immunotherapy against cancers.
Collapse
Affiliation(s)
- Aidong Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ming Cui
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hong Qu
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Jiabo Di
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zaozao Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jiadi Xing
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fan Wu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Wei Wu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xicheng Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Lin Shen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Beihai Jiang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiangqian Su
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
13
|
Artene SA, Tuţă C, Dragoi A, Alexandru O, Stefana Oana P, Tache DE, Dănciulescu MM, Boldeanu MV, Siloşi CA, Dricu A. Current and emerging EGFR therapies for glioblastoma. J Immunoassay Immunochem 2018; 39:1-11. [PMID: 29308973 DOI: 10.1080/15321819.2017.1411816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Glioblastomas (GBMs) are the most lethal and hard to treat malignancies in clinical practice. The standard of care for treating GBM involving surgery and adjuvant radiotherapy and concomitant temozolomide (TMZ) has remained virtually unchanged in the past decade. Molecular targeted therapies against cancer-specific structures have reported mediocre results in the treatment of GBM, due to multiple factors such as the presence of the blood brain barrier or a vast array of molecular alterations which greatly hinder the action of the most therapeutic agents. One such therapy is directed against the epidermal growth factor (EGF) and its' receptor (EGFR) using either monoclonal antibodies or tyrosine kinase inhibitors. Even though anti-EGF/EGFR treatment produced encouraging results in other forms of cancer it failed to present any clinical benefit for patients with GBM. Lately, immunotherapies that focus on using the host's own immune system against cancer cells have gained popularity, with approaches like peptide vaccination being successfully used in clinical trials for different types of malignancies. These immune-based therapies could hold the key to improving both the prognosis and quality of life for patients suffering for cancers previously considered incurable, such as GBM.
Collapse
Affiliation(s)
- Stefan Alexandru Artene
- a Department of Functional Sciences , University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Cristian Tuţă
- a Department of Functional Sciences , University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Alexandra Dragoi
- a Department of Functional Sciences , University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Oana Alexandru
- b Department of Neurology , "Bagdasar-Arseni" University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Purcaru Stefana Oana
- a Department of Functional Sciences , University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Daniela Elise Tache
- a Department of Functional Sciences , University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | | - Mihai Virgil Boldeanu
- d Department of Microbiology , University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Cristian Adrian Siloşi
- e Department of Immunology-Laboratory of Immunology , University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Anica Dricu
- a Department of Functional Sciences , University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
14
|
Kong Z, Wang Y, Ma W. Vaccination in the immunotherapy of glioblastoma. Hum Vaccin Immunother 2018; 14:255-268. [PMID: 29087782 PMCID: PMC5806656 DOI: 10.1080/21645515.2017.1388481] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/10/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma remains one of the most common central nervous system tumors with an extremely poor prognosis. Recently, rapid progress in immunotherapy has provided new options for the treatment of glioblastoma. Vaccination, the primary method of immunotherapy, stimulates the body's tumor-specific immune response by the injection of foreign antigens. Peptide vaccines involve the injection of tumor-specific antigens, such as EGFRvIII or heat-shock proteins. Cell-based vaccines, which primarily include dendritic cell vaccines and tumor cell vaccines, involve injections of ex vivo-modified cells. Despite the encouraging results of phase I/II clinical trials, no successful phase III clinical trials involving glioblastoma immunotherapy, including glioblastoma vaccinations, have been reported to date. In this review, the authors summarize the published outcomes of glioblastoma vaccine therapy, explore its future prospects based on ongoing clinical trials, and discuss combined therapy as a future direction for glioblastoma treatment.
Collapse
Affiliation(s)
- Ziren Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Quan K, Zhang X, Fan K, Liu P, Yue Q, Li B, Wu J, Liu B, Xu Y, Hua W, Zhu W. Icariside II induces cell cycle arrest and apoptosis in human glioblastoma cells through suppressing Akt activation and potentiating FOXO3a activity. Am J Transl Res 2017; 9:2508-2519. [PMID: 28560001 PMCID: PMC5446533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/23/2017] [Indexed: 06/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor, and currently chemotherapeutic options for GBM are very limited. Given the poor prognosis, the development of novel anti-GBM agents is quite urgent. Using two human glioma cells (U87 and A172 cells), we demonstrated that Icariside II (ICA II), an active flavonoid compound derived from Epimedium koreanum, could inhibit GBM cell growth in a dose dependent manner. Wound healing data suggested that ICA II also inhibited the migration of human glioma cells. Mechanistically, ICA II induced apoptosis and cell cycle arrest, and this cytotoxic effect was dependent on the reduction of Forkhead box O3a(FOXO3a) phosphorylation mediated by Akt and the enrichment of nuclear FOXO3a, which initiated the transcription of p21/p27. Importantly, the cytotoxic effect induced by ICA II could be reversed by silencing the expression of FOXO3a, suggesting the critical role of FOXO3a in this process. Taken together, we propose ICA II as a potential novel anti-GBM candidate with a mechanism of inhibiting cell proliferation and inducing apoptosis through suppressing Akt activation and potentiating FOXO3a activity.
Collapse
Affiliation(s)
- Kai Quan
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai, P. R. China
| | - Xin Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai, P. R. China
| | - Kun Fan
- Institutes of Biomedical Sciences, Fudan UniversityShanghai, P. R. China
| | - Peixi Liu
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai, P. R. China
| | - Qi Yue
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai, P. R. China
| | - Bo Li
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Affiliated to Shanghai Jiao Tong UniversityShanghai, P. R. China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan UniversityShanghai, P. R. China
| | - Baojun Liu
- Department of Traditional Chinese Medicine, Huashan Hospital, Fudan UniversityShanghai, P. R. China
| | - Yang Xu
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai, P. R. China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai, P. R. China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai, P. R. China
| |
Collapse
|
16
|
Tivnan A, Heilinger T, Lavelle EC, Prehn JHM. Advances in immunotherapy for the treatment of glioblastoma. J Neurooncol 2016; 131:1-9. [PMID: 27743144 PMCID: PMC5258809 DOI: 10.1007/s11060-016-2299-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 10/09/2016] [Indexed: 10/29/2022]
Abstract
Glioblastoma (GBM) is an aggressive brain tumour, associated with extremely poor prognosis and although there have been therapeutic advances, treatment options remain limited. This review focuses on the use of immunotherapy, harnessing the power of the host's immune system to reject cancer cells. Key challenges in glioma specific immunotherapy as with many other cancers are the limited immunogenicity of the cancer cells and the immunosuppressive environment of the tumour. Although specific antigens have been identified in several cancers; brain tumours, such as GBM, are considered poorly immunogenic. However, as detailed in this review, strategies aimed at circumventing these challenges are showing promise for GBM treatment; including identification of glioma specific antigens and endogenous immune cell activation in an attempt to overcome the immunosuppressive environment which is associated with GBM tumours. An up-to-date summary of current Phase I/II and ongoing Phase III GBM immunotherapy clinical trials is provided in addition to insights into promising preclinical approaches which are focused predominantly on increased induction of Type 1 helper T cell (Th1) immune responses within patients.
Collapse
Affiliation(s)
- Amanda Tivnan
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| | - Tatjana Heilinger
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.,IMC Fachhochschule Krems, University of Applied Sciences, Piaristengasse 1, 3500, Krems, Austria
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 PN40, Ireland.,Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, D02 PN40, Ireland.,Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 PN40, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| |
Collapse
|