1
|
Singh P, Kaur L, Ghose S, Varshney S, Jyothi V, Ghosh S, Kommineni P, Kv S, Scaria V, Sivasubbu S, Chandak GR, Sengupta S. Maternal-Periconceptional Vitamin B12 Deficiency in Wistar Rats Leads to Sex-Specific Programming for Cardiometabolic Disease Risk in the Next Generation. J Nutr 2023; 153:3382-3396. [PMID: 37660953 DOI: 10.1016/j.tjnut.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Maternal vitamin B12 deficiency plays a vital role in fetal programming, as corroborated by previous studies on murine models and longitudinal human cohorts. OBJECTIVES This study assessed the effects of diet-induced maternal vitamin B12 deficiency on F1 offspring in terms of cardiometabolic health and normalization of these effects by maternal-periconceptional vitamin B12 supplementation. METHODS A diet-induced maternal vitamin B12 deficient Wistar rat model was generated in which female rats were either fed a control AIN-76A diet (with 0.01 g/kg vitamin B12) or the same diet with vitamin B12 removed. Females from the vitamin B12-deficient group were mated with males on the control diet. A subset of vitamin B12-deficient females was repleted with vitamin B12 on day 1 of conception. The offspring in the F1 generation were assessed for changes in body composition, plasma biochemistry, and molecular changes in the liver. A multiomics approach was used to obtain a mechanistic insight into the changes in the offspring liver. RESULTS We showed that a 36% reduction in plasma vitamin B12 levels during pregnancy in F0 females can lead to continued vitamin B12 deficiency (60%-70% compared with control) in the F1 offspring and program them for cardiometabolic adversities. These adversities, such as high triglycerides and low high-density lipoprotein cholesterol, were seen only among F1 males but not females. DNA methylome analysis of the liver of F1 3-mo-old offspring highlights sexual dimorphism in the alteration of methylation status of genes critical to signaling processes. Proteomics and targeted metabolomics analysis confirm that sex-specific alterations occur through modulations in PPAR signaling and steroid hormone biosynthesis pathway. Repletion of deficient mothers with vitamin B12 at conception normalizes most of the molecular and biochemical changes. CONCLUSIONS Maternal vitamin B12 deficiency has a programming effect on the next generation and increases the risk for cardiometabolic syndrome in a sex-specific manner. Normalization of the molecular risk markers on vitamin B12 supplementation indicates a causal role.
Collapse
Affiliation(s)
- Praveen Singh
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Lovejeet Kaur
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India; Translational Health Science and Technology Institute, Faridabad, India
| | - Subhoshree Ghose
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Swati Varshney
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vislavath Jyothi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Sourav Ghosh
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Shamsudheen Kv
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Vinod Scaria
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sridhar Sivasubbu
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Giriraj Ratan Chandak
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| | - Shantanu Sengupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
2
|
Melia T, Waxman DJ. Genetic factors contributing to extensive variability of sex-specific hepatic gene expression in Diversity Outbred mice. PLoS One 2020; 15:e0242665. [PMID: 33264334 PMCID: PMC7710091 DOI: 10.1371/journal.pone.0242665] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Sex-specific transcription characterizes hundreds of genes in mouse liver, many implicated in sex-differential drug and lipid metabolism and disease susceptibility. While the regulation of liver sex differences by growth hormone-activated STAT5 is well established, little is known about autosomal genetic factors regulating the sex-specific liver transcriptome. Here we show, using genotyping and expression data from a large population of Diversity Outbred mice, that genetic factors work in tandem with growth hormone to control the individual variability of hundreds of sex-biased genes, including many long non-coding RNA genes. Significant associations between single nucleotide polymorphisms and sex-specific gene expression were identified as expression quantitative trait loci (eQTLs), many of which showed strong sex-dependent associations. Remarkably, autosomal genetic modifiers of sex-specific genes were found to account for more than 200 instances of gain or loss of sex-specificity across eight Diversity Outbred mouse founder strains. Sex-biased STAT5 binding sites and open chromatin regions with strain-specific variants were significantly enriched at eQTL regions regulating correspondingly sex-specific genes, supporting the proposed functional regulatory nature of the eQTL regions identified. Binding of the male-biased, growth hormone-regulated repressor BCL6 was most highly enriched at trans-eQTL regions controlling female-specific genes. Co-regulated gene clusters defined by overlapping eQTLs included sets of highly correlated genes from different chromosomes, further supporting trans-eQTL action. These findings elucidate how an unexpectedly large number of autosomal factors work in tandem with growth hormone signaling pathways to regulate the individual variability associated with sex differences in liver metabolism and disease.
Collapse
Affiliation(s)
- Tisha Melia
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - David J. Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
3
|
Cartier J, Smith T, Thomson JP, Rose CM, Khulan B, Heger A, Meehan RR, Drake AJ. Investigation into the role of the germline epigenome in the transmission of glucocorticoid-programmed effects across generations. Genome Biol 2018; 19:50. [PMID: 29636086 PMCID: PMC5891941 DOI: 10.1186/s13059-018-1422-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/16/2018] [Indexed: 12/13/2022] Open
Abstract
Background Early life exposure to adverse environments affects cardiovascular and metabolic systems in the offspring. These programmed effects are transmissible to a second generation through both male and female lines, suggesting germline transmission. We have previously shown that prenatal overexposure to the synthetic glucocorticoid dexamethasone (Dex) in rats reduces birth weight in the first generation (F1), a phenotype which is transmitted to a second generation (F2), particularly through the male line. We hypothesize that Dex exposure affects developing germ cells, resulting in transmissible alterations in DNA methylation, histone marks and/or small RNA in the male germline. Results We profile epigenetic marks in sperm from F1 Sprague Dawley rats expressing a germ cell-specific GFP transgene following Dex or vehicle treatment of the mothers, using methylated DNA immunoprecipitation sequencing, small RNA sequencing and chromatin immunoprecipitation sequencing for H3K4me3, H3K4me1, H3K27me3 and H3K9me3. Although effects on birth weight are transmitted to the F2 generation through the male line, no differences in DNA methylation, histone modifications or small RNA were detected between germ cells and sperm from Dex-exposed animals and controls. Conclusions Although the phenotype is transmitted to a second generation, we are unable to detect specific changes in DNA methylation, common histone modifications or small RNA profiles in sperm. Dex exposure is associated with more variable 5mC levels, particularly at non-promoter loci. Although this could be one mechanism contributing to the observed phenotype, other germline epigenetic modifications or non-epigenetic mechanisms may be responsible for the transmission of programmed effects across generations in this model. Electronic supplementary material The online version of this article (10.1186/s13059-018-1422-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessy Cartier
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Thomas Smith
- MRC Computational Genomics Analysis and Training Programme, University of Oxford, MRC WIMM Centre for Computational Biology, The Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DS, UK
| | - John P Thomson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Catherine M Rose
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Batbayar Khulan
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Andreas Heger
- MRC Computational Genomics Analysis and Training Programme, University of Oxford, MRC WIMM Centre for Computational Biology, The Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DS, UK
| | - Richard R Meehan
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|