1
|
Liu H, Ma L, Cao Z. DNA methylation and its potential roles in common oral diseases. Life Sci 2024; 351:122795. [PMID: 38852793 DOI: 10.1016/j.lfs.2024.122795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/26/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Oral diseases are among the most common diseases worldwide and are associated with systemic illnesses, and the rising occurrence of oral diseases significantly impacts the quality of life for many individuals. It is crucial to detect and treat these conditions early to prevent them from advancing. DNA methylation is a fundamental epigenetic process that contributes to a variety of diseases including various oral diseases. Taking advantage of its reversibility, DNA methylation becomes a viable therapeutic target by regulating various cellular processes. Understanding the potential role of this DNA alteration in oral diseases can provide significant advances and more opportunities for diagnosis and therapy. This article will review the biology of DNA methylation, and then mainly discuss the key findings on DNA methylation in oral cancer, periodontitis, endodontic disease, oral mucosal disease, and clefts of the lip and/or palate in the background of studies on global DNA methylation and gene-specific DNA methylation.
Collapse
Affiliation(s)
- Heyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Li Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Charoenvicha C, Sirimaharaj W, Khwanngern K, Chattipakorn N, Chattipakorn SC. Alterations in DNA Methylation in Orofacial Clefts. Int J Mol Sci 2022; 23:ijms232112727. [PMID: 36361518 PMCID: PMC9654384 DOI: 10.3390/ijms232112727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Orofacial clefts are among the most common craniofacial anomalies with multifactorial etiologies, including genetics and environments. DNA methylation, one of the most acknowledged mechanisms of epigenetics, is involved in the development of orofacial clefts. DNA methylation has been examined in patients with non-syndromic cleft lip with cleft palate (nsCL/P) from multiple specimens, including blood, saliva, lip, and palate, as well as experimental studies in mice. The results can be reported in two different trends: hypomethylation and hypermethylation. Both hypomethylation and hypermethylation can potentially increase the risk of nsCL/P depending on the types of specimens and the specific regions on each gene and chromosome. This is the most up-to-date review, intending to summarize evidence of the alterations of DNA methylation in association with the occurrence of orofacial clefts. To make things straightforward to understand, we have systematically categorized the data into four main groups: human blood, human tissues, animal models, and the factors associated with DNA methylation. With this review, we are moving closer to the core of DNA methylation associated with nsCL/P development; we hope this is the initial step to find a genetic tool for early detection and prevention of the occurrence of nsCL/P.
Collapse
Affiliation(s)
- Chirakan Charoenvicha
- Plastic and Reconstructive Surgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Clinical Surgical Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wimon Sirimaharaj
- Plastic and Reconstructive Surgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Krit Khwanngern
- Plastic and Reconstructive Surgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C. Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +011-66-53-944-451; Fax: +011-66-53-222-844
| |
Collapse
|
3
|
Suazo J, Salamanca C, González-Hormazábal P, Cáceres-Rojas G, Pantoja R, Leiva N, Pardo R. PEMT variants are associated with nonsyndromic cleft lip with or without cleft palate in Chile. Epigenomics 2022; 14:987-993. [PMID: 36154674 DOI: 10.2217/epi-2022-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To assess the association between PEMT variants and nonsyndromic cleft lip with or without cleft palate in Chile and the effects of these variants on global DNA methylation. Subjects & methods: The authors obtained genotypes for nine variants from 247 cases and 453 controls for genotype-phenotype associations. The effect of significant polymorphisms on global DNA methylation (percentage of long interspersed element-1 methylation) was evaluated in a subsample of 95 controls. Results: After multiple comparison corrections, variants rs7649 and rs4646409 were associated with nonsyndromic cleft lip with or without cleft palate. Carriers of risk alleles presented lower DNA methylation levels than noncarriers. Conclusion: According to functional analysis for risk variants from previous reports, the authors infer that a decrease of methyl group availability is occurring in affected subjects.
Collapse
Affiliation(s)
- José Suazo
- Institute for Research in Dental Sciences, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - Carlos Salamanca
- Institute for Research in Dental Sciences, School of Dentistry, Universidad de Chile, Santiago, Chile.,Research Center in Dental Sciences (CICO), Dental School, Universidad de La Frontera, Temuco, Chile.,Universidad Adventista de Chile, Chillán, Chile
| | - Patricio González-Hormazábal
- Human Genetics Program, Institute of Biomedical Sciences, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Gabriela Cáceres-Rojas
- Institute for Research in Dental Sciences, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - Roberto Pantoja
- Unit of Oral & Maxillofacial Surgery, Hospital Clínico San Borja-Arriaran, Santiago, Chile.,Department of Oral & Maxillofacial Surgery, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - Noemi Leiva
- Unit of Maxillofacial Malformations, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - Rosa Pardo
- Section of Genetics, Hospital Clínico Universidad de Chile, Santiago, Chile.,Unit of Neonatology, Hospital Clínico Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Suazo J. Environmental factors in non-syndromic orofacial clefts: A review based on meta-analyses results. Oral Dis 2022; 28:3-8. [PMID: 33872445 DOI: 10.1111/odi.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Non-syndromic orofacial clefts (NSOFCs) are prevalent birth defects with a complex etiology where several interacting genetic and environmental factors have been observed. This narrative review describes maternal exposures that have been significantly associated with protective effects or risk factors. The statistically significant information reported here was found in meta-analysis studies, taking advantage of their precision in defining intervention effects and their management of heterogeneity between studies. In addition, I propose a hypothesis explaining the biological basis for the results of the meta-analyses. This review aims to improve the evidence available in parent counseling, to prevent the occurrence of orofacial clefts by suggesting lifestyle changes.
Collapse
Affiliation(s)
- José Suazo
- Institute for Research in Dental Sciences, School of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Khan MFJ, Little J, Mossey PA, Butali A, Autelitano L, Meazzini MC, Rubini M. MTHFR promoter methylation might mitigate the effect of smoking at the level of LINE-1 in cleft lip tissues: A preliminary study. Birth Defects Res 2021; 113:1463-1469. [PMID: 34668347 DOI: 10.1002/bdr2.1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/18/2021] [Accepted: 09/10/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND The medial and maxillary aspects of the upper lip originate at separate embryonic stages and therefore may experience different maternal exposure patterns which may affect methylation. Based on this hypothesis, we investigated the level of methylation of the methylene tetrahydrofolate reductase promoter gene (mMTHFR) in tissues from cleft lip, and mMTHFR levels by MTHFR c.677C > T genotype. We further investigated whether mMTHFR mitigates the effect of smoking on long interspersed nuclear element (LINE-1) methylation in these tissues. METHODS DNA extracted from medial and lateral tissues of 26 infants with nonsyndromic cleft lip with or without cleft palate (nsCL/P) was bisulfite converted and mMTHFR was measured on a pyrosequenser. LINE-1 methylation and MTHFR c.677C > T genotype data were obtained in our previous study. RESULTS There was no substantial difference in mMTHFR (p = .733) and LINE-1 (p = .148) between the two tissues. mMTHFR was not influenced by MTHFR c.677C > T genotype, but there was suggestive evidence that the difference was larger among infants exposed to maternal smoking compared to nonexposed. LINE-1 methylation differences were significant (p = .025) in infants born to nonsmoking mothers, but this was not apparent (p = .872) in infants born to mothers who smoked. Our Pearson's correlation analysis suggested a weak inverse association between mMTHFR and LINE-1 (r = -.179, p = .381). CONCLUSION Our preliminary observation of differences in patterns of mMTHFR levels in lip tissue suggests the interplay of gene and environment in the establishment of methylation in tissues at both sides of cleft lip. This requires investigation in a larger cohort, integrated with metabolic assessment.
Collapse
Affiliation(s)
- Mohammad Faisal J Khan
- Department of Neuroscience and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy
| | - Julian Little
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Peter A Mossey
- Craniofacial Development at the World Health Organization-Collaborating Centre for Oral and Craniofacial Research, Dental Hospital and School, University of Dundee, Dundee, Scotland, United Kingdom
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, Iowa, USA
| | - Luca Autelitano
- Smile House, Operation Smile, Regional Centre for Orofacial Clefts and Craniofacial Anomalies, Department of Cranio-Maxillo-Facial Surgery, San Paolo Hospital, University of Milan, Milan, Italy
| | - Maria C Meazzini
- Smile House, Operation Smile, Regional Centre for Orofacial Clefts and Craniofacial Anomalies, Department of Cranio-Maxillo-Facial Surgery, San Paolo Hospital, University of Milan, Milan, Italy
| | - Michele Rubini
- Department of Neuroscience and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy
| |
Collapse
|
6
|
Genetic variants in S-adenosyl-methionine synthesis pathway and nonsyndromic cleft lip with or without cleft palate in Chile. Pediatr Res 2021; 89:1020-1025. [PMID: 32492698 DOI: 10.1038/s41390-020-0994-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/25/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND The S-adenosyl-methionine (SAM) availability is crucial for DNA methylation, an epigenetic mechanism involved in nonsyndromic cleft lip with or without cleft palate (NSCL/P) expression. The aim of this study was to assess the association between single-nucleotide polymorphisms (SNPs) of genes involved in SAM synthesis and NSCL/P in a Chilean population. METHODS In 234 cases and 309 controls, 18 SNPs in AHCY, MTR, MTRR, and MAT2A were genotyped, and the association between them and the phenotype was evaluated based on additive (allele), dominant, recessive and haplotype models, by odds ratio (OR) computing. RESULTS Three deep intronic SNPs of MTR showed a protective effect on NSCL/P expression: rs10925239 (OR 0.68; p = 0.0032; q = 0.0192), rs10925254 (OR 0.66; p = 0.0018; q = 0.0162), and rs3768142 (OR 0.66; p = 0.0015; q = 0.0162). Annotations in expression database demonstrate that the protective allele of the three SNPs is associated with a reduction of MTR expression summed to the prediction by bioinformatic tools of its potentiality to modify splicing sites. CONCLUSIONS The protective effect against NSCL/P of these intronic MTR SNPs seems to be related to a decrease in MTR enzyme expression, modulating the SAM availability for proper substrate methylation. However, functional analyses are necessary to confirm our findings. IMPACT SAM synthesis pathway genetic variants are factors associated to NSCL/P. This article adds new evidence for folate related genes in NSCL/P in Chile. Its impact is to contribute with potential new markers for genetic counseling.
Collapse
|
7
|
Yang W, Guo Y, Ni W, Tian T, Jin L, Liu J, Li Z, Ren A, Wang L. Hypermethylation of WNT3A gene and non-syndromic cleft lip and/or palate in association with in utero exposure to lead: A mediation analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111415. [PMID: 33091767 DOI: 10.1016/j.ecoenv.2020.111415] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES We aim to investigate association between WNT3A methylation and risk of non-syndromic cleft lip and/or palate (NSCL/P), and examine mediating effect of WNT3A methylation on the association of NSCL/P and lead (Pb) exposure in fetuses. METHODS DNA methylation of WNT3A in umbilical cord blood was determined among 59 NSCL/P cases and 118 non-malformed controls. Mediation analysis was performed to evaluate the potential mediating effect of WNT3A methylation on association between concentrations of Pb in umbilical cord and risk for NSCL/P. Additionally, an animal experiment in which cleft palates were induced by lead acetate was conducted. RESULTS The overall average methylation level of WNT3A was significant higher in NSCL/P cases as compared to controls. The risk for NSCL/P was increased by 1.90-fold with hypermethylation of WNT3A. Significant correlation was observed between concentrations of Pb in umbilical cord and methylation level of WNT3A. The hypermethylation of WNT3A had a mediating effect by 9.32% of total effect of Pb on NSCL/P risk. Gender-specific association between WNT3A methylation and NSCL/P was observed in male fetuses, and the percentage of the mediating effect increased to 14.28%. Animal experiment of mice showed that maternal oral exposure to lead acetate may result in cleft palate in offspring. CONCLUSION Hypermethylation of WNT3A was associated with the risk for NSCL/P and may be partly explain the association between exposure to Pb and risk for NSCL/P. The teratogenic and fetotoxic effects of Pb were found in mice.
Collapse
Affiliation(s)
- Wenlei Yang
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yingnan Guo
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Wenli Ni
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Tian Tian
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Lei Jin
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Jufen Liu
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Linlin Wang
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
8
|
Cáceres-Rojas G, Salamanca C, Krause BJ, Recabarren AS, Recabarren PA, Pantoja R, Leiva N, Pardo R, Santos JL, Suazo J. Nonsyndromic orofacial clefts in Chile: LINE-1 methylation and MTHFR variants. Epigenomics 2020; 12:1783-1791. [PMID: 33147056 DOI: 10.2217/epi-2020-0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the risk of nonsyndromic orofacial clefts (NSOFCs) associated with LINE-1 methylation, as a marker of global DNA methylation, and the effect of MTHFR functional variants on this variable. Patients & methods: LINE-1 methylation was evaluated by bisulfite modification coupled to DNA pyrosequencing in 95 NSOFC cases and 95 controls. In these subjects, MTHFR genotypes for variants c.C677T (rs1801133) and c.A1298C (rs1801131) were obtained. Results: Middle levels (second tertile) of LINE-1 methylation increase the risk of NSOFCs. In addition, LINE-1 methylation depends on c.A1298C genotypes in controls but not in cases. Conclusion: A nonlinear association between global DNA methylation and NSOFCs was detected in this Chilean population, which appears to be influenced by MTHFR functional variants.
Collapse
Affiliation(s)
- Gabriela Cáceres-Rojas
- Institute for Research in Dental Sciences, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - Carlos Salamanca
- Institute for Research in Dental Sciences, School of Dentistry, Universidad de Chile, Santiago, Chile.,Research Centre in Dental Sciences (CICO), Dental School, Universidad de La Frontera, Chile.,Universidad Adventista de Chile, Chillán, Chile
| | - Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Andrea S Recabarren
- Institute for Research in Dental Sciences, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - Pamela A Recabarren
- Institute for Research in Dental Sciences, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - Roberto Pantoja
- Maxillofacial Surgery Service, Cleft Lip & Palate Unit, Hospital Clínico San Borja-Arriaran. Santiago de Chile, Chile.,Department of Oral & Maxillofacial Surgery, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - Noemi Leiva
- Unit of Maxillofacial Malformations, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - Rosa Pardo
- Section of Genetics, Hospital Clínico Universidad de Chile, Santiago, Chile.,Unit of Neonatology, Hospital Clínico Universidad de Chile, Santiago, Chile.,Unit of Genetics, Hospital Dr Sótero del Río, Santiago, Chile
| | - José Luis Santos
- Department of Nutrition, Diabetes & Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Suazo
- Institute for Research in Dental Sciences, School of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Joshi RO, Chellappan S, Kukshal P. Exploring the Role of Maternal Nutritional Epigenetics in Congenital Heart Disease. Curr Dev Nutr 2020; 4:nzaa166. [PMID: 33294766 PMCID: PMC7703391 DOI: 10.1093/cdn/nzaa166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Congenital heart disease (CHD) is one of the major debilitating birth defects resulting in significant impact on neonatal and child mortality globally. The etiology of CHD is complex and multifactorial. Many causative genes responsible for CHDs have been identified from the familial forms previously. Still, the non-Mendelian inheritance and predominant sporadic cases have stimulated research to understand the epigenetic basis and environmental impact on the incidence of CHD. The fetal epigenetic programming affecting cardiac development is susceptible to the availability of key dietary factors during the crucial periconceptional period. This article highlights the need and importance of in-depth research in the new emerging area of maternal nutritional epigenetics and CHD. It summarizes the current research and underlines the limitations in these types of studies. This review will benefit the future research on nutrition as a modifiable environmental factor to decrease the incidence of CHD.
Collapse
Affiliation(s)
- Radha O Joshi
- Department of Genomics Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India
| | - Subramanian Chellappan
- Department of Anesthesia, Sri Sathya Sai Sanjeevani International Centre for Child Heart Care and Research, Palwal, Haryana, India
| | - Prachi Kukshal
- Department of Genomics Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India
| |
Collapse
|
10
|
Khan MFJ, Little J, Aleotti V, Mossey PA, Steegers-Theunissen RPM, Autelitano L, Meazzini MC, Ravaei A, Rubini M. LINE-1 methylation in cleft lip tissues: Influence of infant MTHFR c.677C>T genotype. Oral Dis 2019; 25:1668-1671. [PMID: 31161688 DOI: 10.1111/odi.13136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/06/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate the influence of MTHFR c.677C>T genotype on LINE-1 methylation in lateral and medial tissues from cleft lip (CL). METHODS Forty-five consecutive non-syndromic cleft lip with or without cleft palate (nsCL/P) cases were included in the study. Genomic DNA was extracted from tissues at both sides of cleft lip, and LINE-1 methylation was detected by bisulfite conversion and pyrosequencing. MTHFR c.677C>T genotyping was carried out using the TaqMan genotyping assay. RESULTS LINE-1 methylation level was significantly higher on medial side of cleft lip compared with lateral side (p = 0.001). This difference was not significantly influenced by the case's sex or cleft type. However, MTHFR c.677C>T genotyping revealed that the difference in LINE-1 methylation across cleft lip was restricted to carriers of C allele of MTHFR c.677C>T and was not apparent in TT homozygous cases (p = 0.027). CONCLUSION This integrated analysis supports the previous finding of differences in DNA methylation across the two sides of cleft lip and further suggests a possible role of MTHFR c.677C>T genotype in establishing this difference.
Collapse
Affiliation(s)
- Mohammad Faisal J Khan
- Department of Biomedical and Specialty Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy.,Epidemiology Research Group, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven - University, Leuven, Belgium
| | - Julian Little
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Valentina Aleotti
- Department of Biomedical and Specialty Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy
| | - Peter A Mossey
- Craniofacial Development at the World Health Organization-collaborating Centre for Oral and Craniofacial Research, Dental Hospital and School, University of Dundee, Dundee, UK
| | - Régine P M Steegers-Theunissen
- Department of Obstetrics and Gynaecology, University Medical Center, Rotterdam, The Netherlands.,Division Neonatology Erasmus MC, Department of Pediatrics, University Medical Center, Rotterdam, The Netherlands
| | - Luca Autelitano
- Smile House, Regional Centre for Orofacial Clefts and Craniofacial Anomalies, Department of Cranio-Maxillo-Facial Surgery, San Paolo Hospital, University of Milan, Milan, Italy
| | - Maria C Meazzini
- Smile House, Regional Centre for Orofacial Clefts and Craniofacial Anomalies, Department of Cranio-Maxillo-Facial Surgery, San Paolo Hospital, University of Milan, Milan, Italy
| | - Amin Ravaei
- Department of Biomedical and Specialty Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy
| | - Michele Rubini
- Department of Biomedical and Specialty Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy
| |
Collapse
|
11
|
Richmond S, Howe LJ, Lewis S, Stergiakouli E, Zhurov A. Facial Genetics: A Brief Overview. Front Genet 2018; 9:462. [PMID: 30386375 PMCID: PMC6198798 DOI: 10.3389/fgene.2018.00462] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022] Open
Abstract
Historically, craniofacial genetic research has understandably focused on identifying the causes of craniofacial anomalies and it has only been within the last 10 years, that there has been a drive to detail the biological basis of normal-range facial variation. This initiative has been facilitated by the availability of low-cost hi-resolution three-dimensional systems which have the ability to capture the facial details of thousands of individuals quickly and accurately. Simultaneous advances in genotyping technology have enabled the exploration of genetic influences on facial phenotypes, both in the present day and across human history. There are several important reasons for exploring the genetics of normal-range variation in facial morphology. - Disentangling the environmental factors and relative parental biological contributions to heritable traits can help to answer the age-old question "why we look the way that we do?" - Understanding the etiology of craniofacial anomalies; e.g., unaffected family members of individuals with non-syndromic cleft lip/palate (nsCL/P) have been shown to differ in terms of normal-range facial variation to the general population suggesting an etiological link between facial morphology and nsCL/P. - Many factors such as ancestry, sex, eye/hair color as well as distinctive facial features (such as, shape of the chin, cheeks, eyes, forehead, lips, and nose) can be identified or estimated using an individual's genetic data, with potential applications in healthcare and forensics. - Improved understanding of historical selection and adaptation relating to facial phenotypes, for example, skin pigmentation and geographical latitude. - Highlighting what is known about shared facial traits, medical conditions and genes.
Collapse
Affiliation(s)
- Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Laurence J. Howe
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Sarah Lewis
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
- School of Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom
| | - Evie Stergiakouli
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
- School of Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom
| | - Alexei Zhurov
- Applied Clinical Research and Public Health, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
12
|
Khan MFJ, Little J, Nag TC, Mossey PA, Autelitano L, Meazzini MC, Merajuddin A, Singh A, Rubini M. Ultrastructural analysis of collagen fibril diameter distribution in cleft lip. Oral Dis 2018; 25:206-214. [PMID: 30144227 DOI: 10.1111/odi.12962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 01/14/2023]
Abstract
OBJECTIVE A preliminary study to determine collagen fibril diameter (CF-ED) distribution on medial and lateral sides of cleft lip (CL). MATERIAL AND METHODS Tissue samples from medial and lateral sides of CL were fixed in 2.5% glutaraldehyde and 1% osmium tetroxide and embedded in Araldite CY212 resin for transmission electron microscopy. The analysis of CF-ED was performed using the ImageJ program. To characterize the packaging of collagen fibrils (CFs) in the two tissues, we estimated the collagen number density (CF-ND) and fibril-area-fraction (FAF). Differences in measurements across the two sides were calculated using Wilcoxon signed-rank test. RESULTS The CF-ED was statistically significantly (p < 0.001) smaller on the medial side (45.69 ± 7.89 nm) than on the lateral side (54.18 ± 7.62 nm). The medial side had a higher CF-ND and a higher percentage of FAF than the lateral side. CONCLUSION Our finding of a smaller CF-ED and higher CF-ND and FAF for the medial side suggests possible differences in size and distribution of CFs between medial and lateral sides of CL. This finding provides knowledge toward underlying tissue biomechanics that may help reconstruction of perioral tissue scaffolds, ultimately resulting in better treatment of patients with oral clefts.
Collapse
Affiliation(s)
- Mohammad Faisal J Khan
- Department of Biomedical and Specialty Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy
| | - Julian Little
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.,Sophisticated Analytical Instrumentation Facility (SAIF), Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Peter Anthony Mossey
- Craniofacial Development at the World Health Organization-Collaborating Centre for Oral and Craniofacial Research, Dental Hospital and School, University of Dundee, Dundee, UK
| | - Luca Autelitano
- Smile House, Regional Centre for Orofacial Clefts and Craniofacial Anomalies, Department of Cranio-Maxillo-Facial Surgery, San Paolo Hospital, University of Milan, Milan, Italy
| | - Maria Costanza Meazzini
- Smile House, Regional Centre for Orofacial Clefts and Craniofacial Anomalies, Department of Cranio-Maxillo-Facial Surgery, San Paolo Hospital, University of Milan, Milan, Italy
| | - Ahmed Merajuddin
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Anuraag Singh
- Sophisticated Analytical Instrumentation Facility (SAIF), Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Michele Rubini
- Department of Biomedical and Specialty Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy
| |
Collapse
|
13
|
Li Y, Deng Y, Deng C, Xie L, Yu L, Liu L, Yuan Y, Liu H, Dai L. Association of long interspersed nucleotide element-1 and interferon regulatory factor 6 methylation changes with nonsyndromic cleft lip with or without cleft palate. Oral Dis 2018; 25:215-222. [PMID: 30153397 DOI: 10.1111/odi.12965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/09/2018] [Accepted: 07/04/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To examine the possible associations between methylation changes in the promoter regions of long interspersed nucleotide element-1 (LINE-1) and interferon regulatory factor 6 gene (IRF6) and nonsyndromic cleft lip with or without cleft palate (NSCL/P). METHODS A case-control investigation was performed to compare 37 infants affected by NSCL/Ps with 60 babies without cleft malformations. Their genomic DNA samples were obtained, and the LINE-1 and IRF6 methylation levels were measured by using Sequenom MassArray. Unconditional logistic regression was adopted to estimate the odds ratio. RESULTS Infants with NSCL/Ps had a higher methylation level at LINE-1 and IRF6 promoter regions than controls. High levels of LINE-1 (≥64.07%) and IRF6 (≥6.46%) methylation were associated with an increased risk of NSCL/P (LINE-1, OR = 2.63, 95% CI: 1.07-6.57; IRF6, OR = 4.73, 95% CI: 2.10-13.07), and the associations remained to be significant after adjusting for potential confounders. Similar associations were also found for cleft lip only, cleft lip, and palate. CONCLUSION Our study suggested that aberrant methylation of LINE-1 and IRF6 might contribute to the development of NSCL/Ps. Further studies are needed to replicate the findings.
Collapse
Affiliation(s)
- Yanhua Li
- Obstetric and Gynecologic Department, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ying Deng
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Changfei Deng
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liang Xie
- Key Laboratory of Obstetrics & Gynecology and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Yu
- Key Laboratory of Obstetrics & Gynecology and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Pediatric Department, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lijun Liu
- Key Laboratory of Obstetrics & Gynecology and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Pediatric Department, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yumei Yuan
- Hengyang Women and Children Hospital, Hengyang, China
| | - Hanmin Liu
- Key Laboratory of Obstetrics & Gynecology and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Pediatric Department, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Dai
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetrics & Gynecology and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|