1
|
Ghahramani Almanghadim H, Karimi B, Valizadeh S, Ghaedi K. Biological functions and affected signaling pathways by Long Non-Coding RNAs in the immune system. Noncoding RNA Res 2025; 10:70-90. [PMID: 39315339 PMCID: PMC11417496 DOI: 10.1016/j.ncrna.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, the various regulative functions of long non-coding RNAs (LncRNAs) have been well determined. Recently, the vital role of LncRNAs as gene regulators has been identified in the immune system, especially in the inflammatory response. All cells of the immune system are governed by a complex and ever-changing gene expression program that is regulated through both transcriptional and post-transcriptional processes. LncRNAs regulate gene expression within the cell nucleus by influencing transcription or through post-transcriptional processes that affect the splicing, stability, or translation of messenger RNAs (mRNAs). Recent studies in immunology have revealed substantial alterations in the expression of lncRNAs during the activation of the innate immune system as well as the development, differentiation, and activation of T cells. These lncRNAs regulate key aspects of immune function, including the manufacturing of inflammatory molecules, cellular distinction, and cell movement. They do this by modulating protein-protein interactions or through base pairing with RNA and DNA. Here we review the current understanding of the mechanism of action of lncRNAs as novel immune-related regulators and their impact on physiological and pathological processes related to the immune system, including autoimmune diseases. We also highlight the emerging pattern of gene expression control in important research areas at the intersection between immunology and lncRNA biology.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sepehr Valizadeh
- Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
2
|
He RA, Huang C, Zheng CH, Wang J, Yuan SW, Chen BX, Feng K. Discovering a novel glycosyltransferase gene CmUGT1 enhances main metabolites production of Cordyceps militaris. Front Microbiol 2024; 15:1437963. [PMID: 39502416 PMCID: PMC11534717 DOI: 10.3389/fmicb.2024.1437963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Cordyceps militaris is a filamentous fungus used for both medicinal and culinary purposes. It exhibits a wide range of pharmacological activities due to its valuable contents of cordycepin, polysaccharides, carotenoids, terpenoids and other metabolites. However, C. militaris strains are highly susceptible to irreversible degradation in agricultural production, which is often manifested as a prolonged color change period and a significant decrease in the production of secondary metabolites. UDP-glycosyltransferases are an important enzyme family that participates in the synthesis of terpenoids by performing the glycosylation of key residues of enzymes or molecules. However, few studies have focused on its effect on the regulation of metabolite production in C. militaris. Therefore, in this study, we performed transcriptome analysis across four different developmental stages of C. militaris to target the putative glycosyltransferase gene CmUGT1, which plays important roles in metabolite production. We further constructed and screened a CmUGT1-overexpressing strain by Agrobacterium tumefaciens-mediated infestation of C. militaris spores. The major metabolite production of the wild-type and CmUGT1-overexpressing C. militaris strains was determined after short-term shake-flask cultivation of mycelia. The results showed that the yields of carotenoids and polysaccharides in the mycelia of the CmUGT1-overexpressing strains were 3.8 and 3.4 times greater than those in the mycelia of the wild type, respectively (p < 0.01). The levels of intracellular and extracellular cordycepin produced by the overexpression strain were 4.4 and 8.0 times greater than those produced by the wild-type strain (p < 0.01). This suggests that the overexpression of CmUGT1 in C. militaris enhances the synthesis activities of the main enzymes related to metabolite production, which provides a guide for obtaining excellent recombinant strains of C. militaris.
Collapse
Affiliation(s)
- Rong-an He
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Chen Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Chun-hui Zheng
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Jing Wang
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Si-Wen Yuan
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Bai-Xiong Chen
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Kun Feng
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
3
|
Wang H, Shen M, Ma Y, Lan L, Jiang X, Cen X, Guo G, Zhou Q, Yuan M, Chen J, Xia H, Xiao L, Han F. Novel mitophagy inducer alleviates lupus nephritis by reducing myeloid cell activation and autoantigen presentation. Kidney Int 2024; 105:759-774. [PMID: 38296028 DOI: 10.1016/j.kint.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 02/19/2024]
Abstract
Lupus nephritis (LN) is one of the most severe manifestations of systemic lupus erythematosus (SLE), but its mechanism of onset remains unclear. Since impaired mitophagy has been implicated in multiple organs in SLE, we hypothesized that mitophagy dysfunction is critical in the development of LN and that pharmacologically targeting mitophagy would ameliorate this disease. Therefore, lupus-prone MRL/MpJ-Faslpr (MRL/lpr) and NZBWF1/J mice were treated with a novel mitophagy inducer, UMI-77, during their onset of LN. This treatment effectively mitigated kidney inflammation and damage as assessed by histology and flow cytometry. Furthermore, dendritic cell (DC)-T-cell coculture assay indicated that UMI-77 treatment attenuated DC function that would drive T-cell proliferation but did not directly influence the potent T-cell proliferation in lupus mice. UMI-77 also restored mitochondrial function and attenuated proinflammatory phenotypes in lupus DCs. Adoptive transfer of DCs from MRL/lpr mice augmented serum anti-dsDNA IgG, urine protein and T-cell infiltration of the kidney in MRL/MpJ mice, which could be prevented by either treating lupus donors in vivo or lupus DCs directly with UMI-77. UMI-77 also restored mitochondrial function in myeloid cells from patients with LN in vitro as evidenced by increased ATP levels. Thus, enhancing mitophagy in SLE restrains autoimmunity and limits kidney inflammation for LN development. Hence, our findings suggest targeting mitophagy as a tangible pathway to treat LN.
Collapse
Affiliation(s)
- Huijing Wang
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingdi Shen
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanhong Ma
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lan Lan
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xue Jiang
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xufeng Cen
- Department of Biochemistry & Research Center of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Gangqiang Guo
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qin Zhou
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengmeng Yuan
- Department of Biochemistry & Research Center of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China; Hangzhou PhecdaMed Co. Ltd., Hangzhou, Zhejiang, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongguang Xia
- Department of Biochemistry & Research Center of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Liang Xiao
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fei Han
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Wang Y, He J, Ma H, Liu J, Du L, Chai C, Liu Y, Wang X. NR_103776.1 as a novel diagnostic biomarker for systemic lupus erythematosus. Ir J Med Sci 2024; 193:211-221. [PMID: 37369931 DOI: 10.1007/s11845-023-03420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND With the development of sequencing technologies, there is increasing evidence that long noncoding RNAs (lncRNAs) are involved in systemic lupus erythematosus (SLE). The level of NR_103776.1 expression in SLE and its clinical associations are still not well defined. OBJECTIVE To identify differentially expressed lncRNAs and explore their functional roles in SLE. METHODS Transcriptome sequencing was used to screen differentially expressed lncRNAs and mRNAs. Expression validation of clinical samples was performed by QRT-PCR. Bioinformatics was used to analyze its prognostic value and potential function. RESULTS Of the 231 significantly differentially expressed lncRNAs, NR_103776.1 could be used to distinguish not only SLE patients and rheumatoid arthritis patients but also active SLE patients, stable SLE patients, and healthy controls. NR_103776.1 was significantly and negatively correlated with inflammatory indexes (CRP and ESR). NR_103776.1 dysregulation might contribute to the metabolism of RNA and proteins in SLE patients. CONCLUSIONS This study not only provided a transcriptome profile of lncRNAs aberrantly expressed in individual nucleated cells of SLE patients but also suggested NR_103776.1 as a novel potential diagnostic biomarker.
Collapse
Affiliation(s)
- Yuqun Wang
- Department of Rheumatology and Immunology, School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, China
| | - Jia He
- Department of Rheumatology and Immunology, School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, China
| | - Honglei Ma
- Department of Rheumatology and Immunology, School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, China
| | - Junhong Liu
- Department of Rheumatology and Immunology, School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, China
| | - Linping Du
- Department of Rheumatology and Immunology, School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, China
| | - Chunxiang Chai
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Yajing Liu
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Xiaodong Wang
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China.
| |
Collapse
|
5
|
Epigenetic Dysregulation in Autoimmune and Inflammatory Skin Diseases. Clin Rev Allergy Immunol 2022; 63:447-471. [DOI: 10.1007/s12016-022-08956-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 11/11/2022]
|
6
|
Meng XW, Cheng ZL, Lu ZY, Tan YN, Jia XY, Zhang M. MX2: Identification and systematic mechanistic analysis of a novel immune-related biomarker for systemic lupus erythematosus. Front Immunol 2022; 13:978851. [PMID: 36059547 PMCID: PMC9433551 DOI: 10.3389/fimmu.2022.978851] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple organs. However, the current SLE-related biomarkers still lack sufficient sensitivity, specificity and predictive power for clinical application. Thus, it is significant to explore new immune-related biomarkers for SLE diagnosis and development. Methods We obtained seven SLE gene expression profile microarrays (GSE121239/11907/81622/65391/100163/45291/49454) from the GEO database. First, differentially expressed genes (DEGs) were screened using GEO2R, and SLE biomarkers were screened by performing WGCNA, Random Forest, SVM-REF, correlation with SLEDAI and differential gene analysis. Receiver operating characteristic curves (ROCs) and AUC values were used to determine the clinical value. The expression level of the biomarker was verified by RT‒qPCR. Subsequently, functional enrichment analysis was utilized to identify biomarker-associated pathways. ssGSEA, CIBERSORT, xCell and ImmuCellAI algorithms were applied to calculate the sample immune cell infiltration abundance. Single-cell data were analyzed for gene expression specificity in immune cells. Finally, the transcriptional regulatory network of the biomarker was constructed, and the corresponding therapeutic drugs were predicted. Results Multiple algorithms were screened together for a unique marker gene, MX2, and expression analysis of multiple datasets revealed that MX2 was highly expressed in SLE compared to the normal group (all P < 0.05), with the same trend validated by RT‒qPCR (P = 0.026). Functional enrichment analysis identified the main pathway of MX2 promotion in SLE as the NOD-like receptor signaling pathway (NES=2.492, P < 0.001, etc.). Immuno-infiltration analysis showed that MX2 was closely associated with neutrophils, and single-cell and transcriptomic data revealed that MX2 was specifically expressed in neutrophils. The NOD-like receptor signaling pathway was also remarkably correlated with neutrophils (r >0.3, P < 0.001, etc.). Most of the MX2-related interacting proteins were associated with SLE, and potential transcription factors of MX2 and its related genes were also significantly associated with the immune response. Conclusion Our study found that MX2 can serve as an immune-related biomarker for predicting the diagnosis and disease activity of SLE. It activates the NOD-like receptor signaling pathway and promotes neutrophil infiltration to aggravate SLE.
Collapse
Affiliation(s)
- Xiang-Wen Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhi-Luo Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhi-Yuan Lu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ya-Nan Tan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiao-Yi Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
- *Correspondence: Xiao-Yi Jia, ; Min Zhang,
| | - Min Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Xiao-Yi Jia, ; Min Zhang,
| |
Collapse
|
7
|
Wu H, Chen S, Li A, Shen K, Wang S, Wang S, Wu P, Luo W, Pan Q. LncRNA Expression Profiles in Systemic Lupus Erythematosus and Rheumatoid Arthritis: Emerging Biomarkers and Therapeutic Targets. Front Immunol 2022; 12:792884. [PMID: 35003113 PMCID: PMC8732359 DOI: 10.3389/fimmu.2021.792884] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022] Open
Abstract
Systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are two common multisystem autoimmune diseases that share, among others, many clinical manifestations and serological features. The role of long non-coding RNAs (lncRNAs) has been of particular interest in the pathogenesis of autoimmune diseases. Here, we aimed to summarize the roles of lncRNAs as emerging novel biomarkers and therapeutic targets in SLE and RA. We conducted a narrative review summarizing original articles on lncRNAs associated with SLE and RA, published until November 1, 2021. Based on the studies on lncRNA expression profiles in samples (including PBMCs, serum, and exosomes), it was noted that most of the current research is focused on investigating the regulatory mechanisms of these lncRNAs in SLE and/or RA. Several lncRNAs have been hypothesized to play key roles in these diseases. In SLE, lncRNAs such as GAS5, NEAT1, TUG1, linc0949, and linc0597 are dysregulated and may serve as emerging novel biomarkers and therapeutic targets. In RA, many validated lncRNAs, such as HOTAIR, GAS5, and HIX003209, have been identified as promising novel biomarkers for both diagnosis and treatment. The shared lncRNAs, for example, GAS5, may participate in SLE pathogenesis through the mitogen-activated protein kinase pathway and trigger the AMP-activated protein kinase pathway in RA. Here, we summarize the data on key lncRNAs that may drive the pathogenesis of SLE and RA and could potentially serve as emerging novel biomarkers and therapeutic targets in the coming future.
Collapse
Affiliation(s)
- Han Wu
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuxian Chen
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Aifen Li
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Kangyuan Shen
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuting Wang
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Sijie Wang
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ping Wu
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenying Luo
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingjun Pan
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
8
|
Abstract
The last decade has seen an enormous increase in long non-coding RNA (lncRNA) research within rheumatology. LncRNAs are arbitrarily classed as non-protein encoding RNA transcripts that exceed 200 nucleotides in length. These transcripts have tissue and cell specific patterns of expression and are implicated in a variety of biological processes. Unsurprisingly, numerous lncRNAs are dysregulated in rheumatoid conditions, correlating with disease activity and cited as potential biomarkers and targets for therapeutic intervention. In this chapter, following an introduction into each condition, we discuss the lncRNAs involved in rheumatoid arthritis, osteoarthritis and systemic lupus erythematosus. These inflammatory joint conditions share several inflammatory signalling pathways and therefore not surprisingly many commonly dysregulated lncRNAs are shared across these conditions. In the interest of translational research only those lncRNAs which are strongly conserved have been addressed. The lncRNAs discussed here have diverse roles in regulating inflammation, proliferation, migration, invasion and apoptosis. Understanding the molecular basis of lncRNA function in rheumatology will be crucial in fully determining the inflammatory mechanisms that drive these conditions.
Collapse
|